Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate...Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate envelope model(DBEM)was used to identify the“environmental preference profi les”of the studied species based on outputs from three Earth system models(ESMs).Changes in ocean conditions in climate change scenarios could be transformed by the model into those in relative abundance and distribution of species.Therefore,the distributional response of 17 demersal fi shes to climate change in the Yellow Sea could be projected from 1970 to 2060.Indices of latitudinal centroid(LC)and mean temperature of relative abundance(MTRA)were used to represent the results conducted by model.Results present that 17 demersal fi sh species in the Yellow Sea show a trend of anti-poleward shift under both low-emission scenario(RCP 2.6)and high-emission scenario(RCP 8.5)from 1970 to 2060,with the projected average LC in three ESMs shifting at a rate of-1.17±4.55 and-2.76±3.82 km/decade,respectively,which is contrary to the previous projecting studies of fi shes suggesting that fi shes tend to move toward higher latitudes under increased temperature scenarios.The Yellow Sea Cold Water Mass could be the major driver resulting in the shift,which shows a potential signifi cance to fi shery resources management and marine conservation,and provides a new perspective in fi sh migration under climate change.展开更多
基金Supported by the National Natural Science Foundation of China(No.42176234)the Chinese Arctic and Antarctic Creative Program(No.JDXT2018-01)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0402)。
文摘Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate envelope model(DBEM)was used to identify the“environmental preference profi les”of the studied species based on outputs from three Earth system models(ESMs).Changes in ocean conditions in climate change scenarios could be transformed by the model into those in relative abundance and distribution of species.Therefore,the distributional response of 17 demersal fi shes to climate change in the Yellow Sea could be projected from 1970 to 2060.Indices of latitudinal centroid(LC)and mean temperature of relative abundance(MTRA)were used to represent the results conducted by model.Results present that 17 demersal fi sh species in the Yellow Sea show a trend of anti-poleward shift under both low-emission scenario(RCP 2.6)and high-emission scenario(RCP 8.5)from 1970 to 2060,with the projected average LC in three ESMs shifting at a rate of-1.17±4.55 and-2.76±3.82 km/decade,respectively,which is contrary to the previous projecting studies of fi shes suggesting that fi shes tend to move toward higher latitudes under increased temperature scenarios.The Yellow Sea Cold Water Mass could be the major driver resulting in the shift,which shows a potential signifi cance to fi shery resources management and marine conservation,and provides a new perspective in fi sh migration under climate change.