Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflo...Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflower (Carthamus tinctorius L.) as an alternative biodiesel raw material. Four plant growth regulators (PGR) were used to boost the production of safflower. Thirteen treatments were constituted from the four plant regulators and applied to the safflower crop arranged in completely randomised design, repeated three times. The results show that the effect of plant growth regulators was not more than that of the control. More studies have to be channelled towards the relationship between safflower and plant growth regulators.展开更多
The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil fe...The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil feedstocks that could be exploited to produce fuel oil, called biodiesel with the aid of biotechnology. Initially, the biodiesel produced from vegetable oil did not attract much attention because of its high cost. However, the recent increase in petroleum prices and the uncertainties of petroleum availability led to the renewal of interest in biodiesel production from such sustainable resources (i.e., vegetable oil feedstocks). This research focuses on the production of biodiesel from plant resources, and further investigates the influences of key process parameters, such as the molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction period and stirring speed on the biodiesel yield. This investigation is to determine the optimum process parameters for maximum biodiesel yield. The biodiesel was produced from three vegetable oil feedstocks, namely palm, soybean and sunflower oil via a transesterification process. It was observed that all the process parameters significantly influenced the biodiesel yield. The maximum biodiesel yields for palm, sunflower and soybean oil feedstocks were found to be 87.5%, 83.6% and 80.2%, respectively at optimum condition. The results suggest that through proper optimization of the process parameters the biodiesel yields could be maximized. In conclusion, the production of biodiesel from plant resources would be regarded as a sustainable solution to the ever increasing demand of fuel oils.展开更多
Progeny studies of Jatropha curcas and Pongamia pinnata were carried with respect to bioproductivity,pod and seed characters which is one of the selection methods in tree improvement programmes. Variations in bioprodu...Progeny studies of Jatropha curcas and Pongamia pinnata were carried with respect to bioproductivity,pod and seed characters which is one of the selection methods in tree improvement programmes. Variations in bioproductivity and biodiesel parameters of both the plants were compared every 6 months for 4 years of investigation and analyzed by analysis of variance and correlation coefficient by Pearson's method using software Graphpad instat 3.06(for Windows and Mac). P. pinnata has better germination rate(71.4 %), 100 pod weight(PW)(311.59 g) and 100 seed weight(SW)(173.46 g) as compared to J. curcas for germination rate(43.2 %), 100 PW(111.29 g) and 100 SW(67.46 g). P. pinnata has strong correlation for plant height to canopy growth(CG)(0.948), collar diameter(CD)(0.994), number of branches per plant(NBP)(0.995) and to number of leaves per branch(NLB)(0.862) as compared to J.curcas which showed good correlation among plant height to CG(0.976), CD(0.970), NBP(0.988), NLB(0.920) and to number of pods per branch(0.657). However, J. curcas depicted negative correlation for pod breadth to seed length(SL)(-0.447), seed breadth(-0.248) and to seed thickness(ST)(-0.364) and among the 100 PW to SL(-0.199), ST(-0.220) and to 100 SW(-0.704). About 4 kg of P. pinnata seeds were required for each liter of crude oil which yields896 ml of biodiesel on transesterification as compared to5.66 kg of J. curcas seeds for a liter of crude oil, producing about 663 ml of biodiesel. The quality of biodiesel meets the major specification of American Society for Testing and Materials(ASTM) standards for biodiesel. The crude glycerin and seed cake obtained as byproduct during biodiesel production were also measured which can be purified and used in composting, animal feeds, pharmaceuticals and cosmetic industries.展开更多
文摘Global concerns about the environmental impact of combustion emissions from petroleum fuels influence new research to seek for alternative energy sources. The current study investigates the possibility of using safflower (Carthamus tinctorius L.) as an alternative biodiesel raw material. Four plant growth regulators (PGR) were used to boost the production of safflower. Thirteen treatments were constituted from the four plant regulators and applied to the safflower crop arranged in completely randomised design, repeated three times. The results show that the effect of plant growth regulators was not more than that of the control. More studies have to be channelled towards the relationship between safflower and plant growth regulators.
文摘The demand for fuel oil is ever increasing with the advance of the modern world, whereas worldwide reserves of fossil oils are diminishing at an alarming rate. However, there exist large stockpiles of vegetable oil feedstocks that could be exploited to produce fuel oil, called biodiesel with the aid of biotechnology. Initially, the biodiesel produced from vegetable oil did not attract much attention because of its high cost. However, the recent increase in petroleum prices and the uncertainties of petroleum availability led to the renewal of interest in biodiesel production from such sustainable resources (i.e., vegetable oil feedstocks). This research focuses on the production of biodiesel from plant resources, and further investigates the influences of key process parameters, such as the molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction period and stirring speed on the biodiesel yield. This investigation is to determine the optimum process parameters for maximum biodiesel yield. The biodiesel was produced from three vegetable oil feedstocks, namely palm, soybean and sunflower oil via a transesterification process. It was observed that all the process parameters significantly influenced the biodiesel yield. The maximum biodiesel yields for palm, sunflower and soybean oil feedstocks were found to be 87.5%, 83.6% and 80.2%, respectively at optimum condition. The results suggest that through proper optimization of the process parameters the biodiesel yields could be maximized. In conclusion, the production of biodiesel from plant resources would be regarded as a sustainable solution to the ever increasing demand of fuel oils.
基金supported by the project UGC-MRP No.F.No.-39-258/2010(SF),UGC,Government of India,New Delhi
文摘Progeny studies of Jatropha curcas and Pongamia pinnata were carried with respect to bioproductivity,pod and seed characters which is one of the selection methods in tree improvement programmes. Variations in bioproductivity and biodiesel parameters of both the plants were compared every 6 months for 4 years of investigation and analyzed by analysis of variance and correlation coefficient by Pearson's method using software Graphpad instat 3.06(for Windows and Mac). P. pinnata has better germination rate(71.4 %), 100 pod weight(PW)(311.59 g) and 100 seed weight(SW)(173.46 g) as compared to J. curcas for germination rate(43.2 %), 100 PW(111.29 g) and 100 SW(67.46 g). P. pinnata has strong correlation for plant height to canopy growth(CG)(0.948), collar diameter(CD)(0.994), number of branches per plant(NBP)(0.995) and to number of leaves per branch(NLB)(0.862) as compared to J.curcas which showed good correlation among plant height to CG(0.976), CD(0.970), NBP(0.988), NLB(0.920) and to number of pods per branch(0.657). However, J. curcas depicted negative correlation for pod breadth to seed length(SL)(-0.447), seed breadth(-0.248) and to seed thickness(ST)(-0.364) and among the 100 PW to SL(-0.199), ST(-0.220) and to 100 SW(-0.704). About 4 kg of P. pinnata seeds were required for each liter of crude oil which yields896 ml of biodiesel on transesterification as compared to5.66 kg of J. curcas seeds for a liter of crude oil, producing about 663 ml of biodiesel. The quality of biodiesel meets the major specification of American Society for Testing and Materials(ASTM) standards for biodiesel. The crude glycerin and seed cake obtained as byproduct during biodiesel production were also measured which can be purified and used in composting, animal feeds, pharmaceuticals and cosmetic industries.