Even though biodissolution of chalcopyrite is considered to be one of the key contributors in the formation of acid mine drainage(AMD),there are few studies to control AMD by inhibiting chalcopyrite biodissolution.The...Even though biodissolution of chalcopyrite is considered to be one of the key contributors in the formation of acid mine drainage(AMD),there are few studies to control AMD by inhibiting chalcopyrite biodissolution.Therefore,a novel method of using hematite to inhibit chalcopyrite biodissolution was proposed and verified.The results indicated that chalcopyrite biodissolution could be significantly inhibited by hematite,which consequently decreased the formation of AMD.In the presence of hematite,the final biodissolution rate of chalcopyrite decreased from 57.9%to 44.4%at 20 day.This in turn suggested that the formation of AMD was effectively suppressed under such condition.According to the biodissolution results,mineral composition and morphology analyses,and electrochemical analysis,it was shown that hematite promoted the formation and accumulation of passivation substances(jarosite and Cu2-xS)on chalcopyrite surface,thus inhibiting the biodissolution of chalcopyrite and limiting the formation of AMD.展开更多
基金supported by the Natural Science Foundation of Hunan Province(No.2018JJ1041)National Natural Science Foundation of China(Nos.51774332,U1932129,51804350 and51934009)。
文摘Even though biodissolution of chalcopyrite is considered to be one of the key contributors in the formation of acid mine drainage(AMD),there are few studies to control AMD by inhibiting chalcopyrite biodissolution.Therefore,a novel method of using hematite to inhibit chalcopyrite biodissolution was proposed and verified.The results indicated that chalcopyrite biodissolution could be significantly inhibited by hematite,which consequently decreased the formation of AMD.In the presence of hematite,the final biodissolution rate of chalcopyrite decreased from 57.9%to 44.4%at 20 day.This in turn suggested that the formation of AMD was effectively suppressed under such condition.According to the biodissolution results,mineral composition and morphology analyses,and electrochemical analysis,it was shown that hematite promoted the formation and accumulation of passivation substances(jarosite and Cu2-xS)on chalcopyrite surface,thus inhibiting the biodissolution of chalcopyrite and limiting the formation of AMD.