Here we reported a novel electrochemical encapsulation method to encapsulate various nanomaterials and bimolecules into collagen. The electrochemical encapsulation process involves assembling of collagen along with Na...Here we reported a novel electrochemical encapsulation method to encapsulate various nanomaterials and bimolecules into collagen. The electrochemical encapsulation process involves assembling of collagen along with Nano/bio materials using an isoelectric focusing mechanism. We have showed that a wide range of Nanomaterials such as carbon nanotubes, polymeric nanoparticles, magnetic calcium phosphate nanoparticles?and biomolecules can be encapsulated into collagen. These novel collagen-based composite materials possess improved electric, mechanical, antimicrobial, magnetic, bioactive properties. Thus, this novel electrochemical encapsulation process offers a means to fabricate novel biomaterials for various biomedical applications such as tendon/ligament, nerve, skin tissue engineering, tendon/ligament to bone grafts, and sutures, etc.展开更多
Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills 〉500 000 people each year. The primary cost of artemisinin is the very expensive...Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills 〉500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (~0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of di- hydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants.展开更多
1 Results Silica spherical particles with hollow structure are directly prepared by interfacial reaction methods using W/O/W emulsion (schematic diagram in Fig.1)[1].Fig.1 Silica microcapsule formationThe mixing of W/...1 Results Silica spherical particles with hollow structure are directly prepared by interfacial reaction methods using W/O/W emulsion (schematic diagram in Fig.1)[1].Fig.1 Silica microcapsule formationThe mixing of W/O emulsion consisting of sodium silicate solution (inner water phase) and n-hexane solution (oil phase) to outer water phase dissolving NH4HCO3 or other salts affords silica microcapsules.The critical feature of this method is the direct formation of hollow structure.Therefore,the core com...展开更多
Artemia is deficient in polyunsaturated fatty acids(PUFAs),particularly in arachidonic(ARA,20:4n-6),eicosapentaenoic(EPA,20:5n-3),and docosahexaenoic acid(DHA,22:6n-3).The aim of this study was to determine the optima...Artemia is deficient in polyunsaturated fatty acids(PUFAs),particularly in arachidonic(ARA,20:4n-6),eicosapentaenoic(EPA,20:5n-3),and docosahexaenoic acid(DHA,22:6n-3).The aim of this study was to determine the optimal time in which the higher contents of PUFAs in juveniles of Artemia franciscana were obtained by the effect of enrichment with the tuna orbital oil emulsion.Six enrichment periods were evaluated:3,6,9,12,15 and 18 h,in addition to a control treatment(0 h).The most abundant fatty acids in A.franciscana were monounsaturated(43.10%±4.35–52.92%±5.82%),followed by saturated(33.83%±1.71–42.33%±2.31%)and PUFAs(8.86%±2.83%–21.32%±2.38%).ARA decreased over the enrichment time;the maximum content was 5.74±0.37%at 3 h,which was not statistically different with respect to the content recorded at 0 h.The highest content of EPA was at 3 h(6.47%±1.44%),without significant differences with the content registered at 0 h,while that from 6 h and until 15 h tended to decrease significantly.At 6 h,the content of DHA(8.84%±2.72%)was significantly higher compared to the rest of the treatments,which did not differ among themselves,or with the control.After to the 6 h and until 15 h,the content of PUFAs tended to decrease,which could indicate the metabolization of them by A.franciscana,coupled with the possible oxidation of these fatty acids in the enrichment solution.展开更多
The formation of K-carrageenan droplets in channel emulsification was experimentally investigated. The dispersed phase was vertically injected into co-flowing immiscible palm oil in the direction of gravity. This stud...The formation of K-carrageenan droplets in channel emulsification was experimentally investigated. The dispersed phase was vertically injected into co-flowing immiscible palm oil in the direction of gravity. This study focused on predicting K-carrageenan drop size using force balance analysis. The force balance model considers the interracial tension to be the solitary attaching force, while a combination of the drag force from the co-flowing palm oil and the body force of the extruding K-carrageenan liquid act as the detaching forces. The conventional model gave poor predictions for droplet size, with an average relative deviation of 23%. This large deviation could be attributed to necking phenomena and an underestimation of the drag force generated on the shear-thinning K-carrageenan solution. By incorporating correction factors, the average relative deviation of the force balance model dronned to 4%.展开更多
文摘Here we reported a novel electrochemical encapsulation method to encapsulate various nanomaterials and bimolecules into collagen. The electrochemical encapsulation process involves assembling of collagen along with Nano/bio materials using an isoelectric focusing mechanism. We have showed that a wide range of Nanomaterials such as carbon nanotubes, polymeric nanoparticles, magnetic calcium phosphate nanoparticles?and biomolecules can be encapsulated into collagen. These novel collagen-based composite materials possess improved electric, mechanical, antimicrobial, magnetic, bioactive properties. Thus, this novel electrochemical encapsulation process offers a means to fabricate novel biomaterials for various biomedical applications such as tendon/ligament, nerve, skin tissue engineering, tendon/ligament to bone grafts, and sutures, etc.
文摘Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills 〉500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (~0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of di- hydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants.
文摘1 Results Silica spherical particles with hollow structure are directly prepared by interfacial reaction methods using W/O/W emulsion (schematic diagram in Fig.1)[1].Fig.1 Silica microcapsule formationThe mixing of W/O emulsion consisting of sodium silicate solution (inner water phase) and n-hexane solution (oil phase) to outer water phase dissolving NH4HCO3 or other salts affords silica microcapsules.The critical feature of this method is the direct formation of hollow structure.Therefore,the core com...
基金This work was supported by the Development Program and Research Support of the Autonomous University of Sinaloa with the project PROFAPI20015/153.
文摘Artemia is deficient in polyunsaturated fatty acids(PUFAs),particularly in arachidonic(ARA,20:4n-6),eicosapentaenoic(EPA,20:5n-3),and docosahexaenoic acid(DHA,22:6n-3).The aim of this study was to determine the optimal time in which the higher contents of PUFAs in juveniles of Artemia franciscana were obtained by the effect of enrichment with the tuna orbital oil emulsion.Six enrichment periods were evaluated:3,6,9,12,15 and 18 h,in addition to a control treatment(0 h).The most abundant fatty acids in A.franciscana were monounsaturated(43.10%±4.35–52.92%±5.82%),followed by saturated(33.83%±1.71–42.33%±2.31%)and PUFAs(8.86%±2.83%–21.32%±2.38%).ARA decreased over the enrichment time;the maximum content was 5.74±0.37%at 3 h,which was not statistically different with respect to the content recorded at 0 h.The highest content of EPA was at 3 h(6.47%±1.44%),without significant differences with the content registered at 0 h,while that from 6 h and until 15 h tended to decrease significantly.At 6 h,the content of DHA(8.84%±2.72%)was significantly higher compared to the rest of the treatments,which did not differ among themselves,or with the control.After to the 6 h and until 15 h,the content of PUFAs tended to decrease,which could indicate the metabolization of them by A.franciscana,coupled with the possible oxidation of these fatty acids in the enrichment solution.
基金the Ministry of Science, Technology and Innovation (MOSTI), Malaysia, for financing this study under the SCF0012-IND-2006 grant
文摘The formation of K-carrageenan droplets in channel emulsification was experimentally investigated. The dispersed phase was vertically injected into co-flowing immiscible palm oil in the direction of gravity. This study focused on predicting K-carrageenan drop size using force balance analysis. The force balance model considers the interracial tension to be the solitary attaching force, while a combination of the drag force from the co-flowing palm oil and the body force of the extruding K-carrageenan liquid act as the detaching forces. The conventional model gave poor predictions for droplet size, with an average relative deviation of 23%. This large deviation could be attributed to necking phenomena and an underestimation of the drag force generated on the shear-thinning K-carrageenan solution. By incorporating correction factors, the average relative deviation of the force balance model dronned to 4%.