Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In litera...Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In literature, researchers and practitioners proposed numerous approaches for automatic e-mail spam detection. Learning-based filtering is one of the important approaches used for spam detection where a filter needs to be trained to extract the knowledge that can be used to detect the spam. In this context, Artificial Neural Networks is a widely used machine learning based filter. In this paper, we propose the use of a common type of Feedforward Neural Network called Multi-Layer Perceptron (MLP) for the purpose of e-mail spam identification, where the weights of this network model are found using a new nature-inspired metaheuristic algorithm called Biogeography Based Optimization (BBO). Experiments and results based on two different spam datasets show that the developed MLP model trained by BBO gets high generalization performance compared to other optimization methods used in the literature for e-mail spam detection.展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
Recently,developments of Internet and cloud technologies have resulted in a considerable rise in utilization of online media for day to day lives.It results in illegal access to users’private data and compromises it....Recently,developments of Internet and cloud technologies have resulted in a considerable rise in utilization of online media for day to day lives.It results in illegal access to users’private data and compromises it.Phishing is a popular attack which tricked the user into accessing malicious data and gaining the data.Proper identification of phishing emails can be treated as an essential process in the domain of cybersecurity.This article focuses on the design of bio-geography based optimization with deep learning for Phishing Email detection and classification(BBODL-PEDC)model.The major intention of the BBODL-PEDC model is to distinguish emails between legitimate and phishing.The BBODL-PEDC model initially performs data pre-processing in three levels namely email cleaning,tokenization,and stop word elimination.Besides,TF-IDF model is applied for the extraction of useful feature vectors.Moreover,optimal deep belief network(DBN)model is used for the email classification and its efficacy can be boosted by the BBO based hyperparameter tuning process.The performance validation of the BBODL-PEDC model can be performed using benchmark dataset and the results are assessed under several dimensions.Extensive comparative studies reported the superior outcomes of the BBODL-PEDC model over the recent approaches.展开更多
The distribution of merchandises and commodities from source towns to final destinations is a vital issue. The job of transporter’s decisions can be optimized by reformulating the transportation problem as generaliza...The distribution of merchandises and commodities from source towns to final destinations is a vital issue. The job of transporter’s decisions can be optimized by reformulating the transportation problem as generalization of the classical transportation problems. Multiobjective multi-dimensional transportation network is considered the extension of conventional two-dimensional transportation network and is convenient for dealing with transportation systems with multiple supply nodes, multiple demand nodes, as well as diverse modes of transportation demands or delivering multiple kinds of merchandises. In this study, we implement an improved Biogeography based optimization IBBO to the flow of the commodities of the main roads to main nodes in the North Western Coastal Strip of Egypt, where there are four main roads and three nodes. The proposed algorithm incorporates the dominance criteria to handle multiple objective functions which enable the decision maker to cover all the Pareto frontier of the problem which have a large-scale size. Numerical results were reported in order to establish the real computational burden of the proposed algorithm and to assess its convergence performances for solving real geographical problem.展开更多
文摘Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In literature, researchers and practitioners proposed numerous approaches for automatic e-mail spam detection. Learning-based filtering is one of the important approaches used for spam detection where a filter needs to be trained to extract the knowledge that can be used to detect the spam. In this context, Artificial Neural Networks is a widely used machine learning based filter. In this paper, we propose the use of a common type of Feedforward Neural Network called Multi-Layer Perceptron (MLP) for the purpose of e-mail spam identification, where the weights of this network model are found using a new nature-inspired metaheuristic algorithm called Biogeography Based Optimization (BBO). Experiments and results based on two different spam datasets show that the developed MLP model trained by BBO gets high generalization performance compared to other optimization methods used in the literature for e-mail spam detection.
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.
基金This research was supported by the Researchers Supporting Program(TUMA-Project2021–27)Almaarefa University,Riyadh,Saudi Arabia.
文摘Recently,developments of Internet and cloud technologies have resulted in a considerable rise in utilization of online media for day to day lives.It results in illegal access to users’private data and compromises it.Phishing is a popular attack which tricked the user into accessing malicious data and gaining the data.Proper identification of phishing emails can be treated as an essential process in the domain of cybersecurity.This article focuses on the design of bio-geography based optimization with deep learning for Phishing Email detection and classification(BBODL-PEDC)model.The major intention of the BBODL-PEDC model is to distinguish emails between legitimate and phishing.The BBODL-PEDC model initially performs data pre-processing in three levels namely email cleaning,tokenization,and stop word elimination.Besides,TF-IDF model is applied for the extraction of useful feature vectors.Moreover,optimal deep belief network(DBN)model is used for the email classification and its efficacy can be boosted by the BBO based hyperparameter tuning process.The performance validation of the BBODL-PEDC model can be performed using benchmark dataset and the results are assessed under several dimensions.Extensive comparative studies reported the superior outcomes of the BBODL-PEDC model over the recent approaches.
文摘The distribution of merchandises and commodities from source towns to final destinations is a vital issue. The job of transporter’s decisions can be optimized by reformulating the transportation problem as generalization of the classical transportation problems. Multiobjective multi-dimensional transportation network is considered the extension of conventional two-dimensional transportation network and is convenient for dealing with transportation systems with multiple supply nodes, multiple demand nodes, as well as diverse modes of transportation demands or delivering multiple kinds of merchandises. In this study, we implement an improved Biogeography based optimization IBBO to the flow of the commodities of the main roads to main nodes in the North Western Coastal Strip of Egypt, where there are four main roads and three nodes. The proposed algorithm incorporates the dominance criteria to handle multiple objective functions which enable the decision maker to cover all the Pareto frontier of the problem which have a large-scale size. Numerical results were reported in order to establish the real computational burden of the proposed algorithm and to assess its convergence performances for solving real geographical problem.