The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioratio...The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau.展开更多
Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditi...Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditions are analogous to those found on the surface of Mars and in the atmosphere of Venus,making Earth’s near space a unique natural laboratory for astrobiological research.To address essential astrobiological questions,teams from the Chinese Academy of Sciences(CAS)have developed a scientific balloon platform,the CAS Balloon-Borne Astrobiology Platform(CAS-BAP),to study the effects of near space environmental conditions on the biology and survival strategies of representative organisms in this terrestrial analog.Here,we describe the versatile Biological Samples Exposure Payload(BIOSEP)loaded on the CAS-BAP with respect to its structure and function.The primary function of BIOSEP is to expose appropriate biological specimens to the harsh conditions of near space and subsequently return the exposed samples to laboratories for further analysis.Four successful flight missions in near space from 2019 to 2021 have demonstrated the high reliability and efficiency of the payload in communicating between hardware and software units,recording environmental data,exposing sample containers,protecting samples from external contamination,and recovering samples.Understanding the effects of Earth’s near space conditions on biological specimens will provide valuable insights into the survival strategies of organisms in extreme environments and the search for life beyond Earth.The development of BIOSEP and associated biological exposure experiments will enhance our understanding of the potential for life on Mars and the habitability of the atmospheric regions of other planets in the solar system and beyond.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
Valine is an essential amino acid and a type of branched-chain amino acid. Due to the involvement of branchedchain amino acids in various metabolic pathways, there has been a surge of interests in valine nutrition and...Valine is an essential amino acid and a type of branched-chain amino acid. Due to the involvement of branchedchain amino acids in various metabolic pathways, there has been a surge of interests in valine nutrition and its role in animal physiology. In pigs, the interactions between valine and other branched-chain amino acids or aromatic amino acids are complex. In this review, we delve into the interaction mechanism, metabolic pathways, and biological functions of valine. Appropriate valine supplementation not only enhances growth and reproductive performances, but also modulates gut microbiota and immune functions. Based on past observations and interpretations, we provide recommended feed levels of valine for weaned piglets, growing pigs, gilts, lactating sows, barrows and entire males. The summarized valine nutrient requirements for pigs at different stages offer valuable insights for future research and practical applications in animal husbandry.展开更多
Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also ...Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.展开更多
White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrien...White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.展开更多
Biological nitrification inhibitors(BNIs)are released from plant roots and inhibit the nitrification activity of microorganisms in soils,reducing NO_(3)^(‒)leaching and N2O emissions,and increasing nitrogenuse efficie...Biological nitrification inhibitors(BNIs)are released from plant roots and inhibit the nitrification activity of microorganisms in soils,reducing NO_(3)^(‒)leaching and N2O emissions,and increasing nitrogenuse efficiency(NUE).Several recent studies have focused on the identification of new BNIs,yet little is known about the genetic loci that govern their biosynthesis and secretion.We applied a combined transcriptomic and metabolomic analysis to investigate possible biosynthetic pathways and transporters involved in the biosynthesis and release of BNI 1,9-decanediol(1,9-D),which was previously identified in rice root exudates.Our results linked four fatty acids,icosapentaenoic acid,linoleate,norlinolenic acid,and polyhydroxy-α,ω-divarboxylic acid,with 1,9-D biosynthesis and three transporter families,namely the ATP-binding cassette protein family,the multidrug and toxic compound extrusion family,and the major facilitator superfamily,with 1,9-D release from roots into the soil medium.Our finding provided candidates for further work on the genes implicated in the biosynthesis and secretion of 1,9-D and pinpoint genetic loci for crop breeding to improve NUE by enhancing 1,9-D secretion,with the potential to reduce NO_(3)^(‒)leaching and N2O emissions from agricultural soils.展开更多
The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was...The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was attached to the cage's base,whereas the Hall sensor was attached to the cage's cover.Then,the RJ25 adaptor relayed the running signal to the main control board.Finally,the main control board was connected to the USB port of the computer with the USB connection.Data were collected using the online-accessible,self-created software Magturning.Through Magturning,generated data were saved and exported in real time.Afterward,the device was validated by collecting data on the locomotor activities of mice under dif-ferent light conditions.In conclusion,this new device can record circadian activity of rodents.Our device is appropriate for interdisciplinary investigations related to biological clock research.展开更多
Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinic...Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.展开更多
Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disa...Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disadvantages of BSCs research for the development and application of BSCs theory.Bibliometric analysis of 2,186 BSCs literatures from Web of Science showed an exponential growth trend,as China and the United States as the top 2 in terms of publication volume.High quality publications are mainly from European and American countries,such as the United States,Germany and Spain.The top 3 publishers are Journal of Arid Environments,Soil Biology&Biochemistry and Plant and Soil,and disciplines include ecology,environmental science,and soil science,etc..Research institutions mainly affiliate to the Chinese Academy of Sciences,United States Department of the Interior,United States Geological Survey,Hebrew University of Jerusalem,Consejo Superior de Investigaciones Cientificas,and Universidad Rey Juan Carlos.Authors mainly come from United States,Israel,Spain and China.Funds are mainly from the National Natural Science Foundation of China,Spanish Government,Chinese Academy of Sciences,and National Science Foundation of the United States.Biological soil crusts(biocrusts,cyanobacteria,lichens,moss crusts,bryophytes),drylands,climate change,photosynthesis and desert are high-frequency keywords.Future research will focus on the driving mechanisms of BSCs on global biogeochemical cycles,maintaining global biodiversity on important ecological processes,global C,N,and P cycles.The impact on biological invasion,sandstorms,and water balance,multifunctional and reciprocal mechanisms for maintaining the stability of desert and sandy ecosystems,and impact on the formulation of management policies for arid ecosystems,corresponding to global climate change,and the estimation of regional,local,and microscale distribution of BSCs based on machine deep learning modeling gradually focus on.The ecosystem service functions of BSCs,the soil and water conservation and soil stability mediated by BSCs in arid and semi-arid regions,and the excavation of stress resistant genes for BSCs will be emphasized.展开更多
Electronic nose(eNose) is a modern bioelectronic sensor for monitoring biological processes that convert CO_(2) into valueadded products, such as products formed during photosynthesis and microbial fermentation. eNose...Electronic nose(eNose) is a modern bioelectronic sensor for monitoring biological processes that convert CO_(2) into valueadded products, such as products formed during photosynthesis and microbial fermentation. eNose technology uses an array of sensors to detect and quantify gases, including CO_(2), in the air. This study briefly introduces the concept of eNose technology and potential applications thereof in monitoring CO_(2) conversion processes. It also provides background information on biological CO_(2) conversion processes. Furthermore, the working principles of eNose technology vis-à-vis gas detection are discussed along with its advantages and limitations versus traditional monitoring methods. This study also provides case studies that have used this technology for monitoring biological CO_(2) conversion processes. eNose-predicted measurements were observed to be completely aligned with biological parameters for R~2 values of 0.864, 0.808, 0.802, and 0.948. We test eNose technology in a variety of biological settings, such as algae farms or bioreactors, to determine its effectiveness in monitoring CO_(2) conversion processes. We also explore the potential benefits of employing this technology vis-à-vis monitoring biological CO_(2) conversion processes, such as increased reaction efficiency and reduced costs versus traditional monitoring methods. Moreover, future directions and challenges of using this technology in CO_(2) capture and conversion have been discussed. Overall, we believe this study would contribute to developing new and innovative methods for monitoring biological CO_(2) conversion processes and mitigating climate change.展开更多
Objective To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods We predicted and characterized HQD patte...Objective To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine.展开更多
We present a numerical approach for modeling unknown dynamical systems using partially observed data,with a focus on biological systems with(relatively)complex dynamical behavior.As an extension of the recently develo...We present a numerical approach for modeling unknown dynamical systems using partially observed data,with a focus on biological systems with(relatively)complex dynamical behavior.As an extension of the recently developed deep neural network(DNN)learning methods,our approach is particularly suitable for practical situations when(i)measurement data are available for only a subset of the state variables,and(ii)the system parameters cannot be observed or measured at all.We demonstrate that,with a properly designed DNN structure with memory terms,effective DNN models can be learned from such partially observed data containing hidden parameters.The learned DNN model serves as an accurate predictive tool for system analysis.Through a few representative biological problems,we demonstrate that such DNN models can capture qualitative dynamical behavior changes in the system,such as bifurcations,even when the parameters controlling such behavior changes are completely unknown throughout not only the model learning process but also the system prediction process.The learned DNN model effectively creates a“closed”model involving only the observables when such a closed-form model does not exist mathematically.展开更多
Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address ...Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address this issue,exhibiting significant potential for enhancing wound healing rates,improving wound quality,and promoting skin regeneration.However,the use of stem cells in skin regeneration presents several challenges.Recently,stem cells and biomaterials have been identified as crucial components of the wound-healing process.Combination therapy involving the development of biocompatible scaffolds,accompanying cells,multiple biological factors,and structures resembling the natural extracellular matrix(ECM)has gained considerable attention.Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells,providing them with an environment conducive to growth,similar to that of the ECM.These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing.This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing,emphasizing their capacity to facilitate stem cell adhesion,proliferation,differentiation,and paracrine functions.Additionally,we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.展开更多
BACKGROUND Ulcerative colitis(UC)is an idiopathic,chronic inflammatory bowel disease(IBD)most often located in the rectum,but may involve the entire colon.Extra intestinal manifestations(EIMs)occur with varying freque...BACKGROUND Ulcerative colitis(UC)is an idiopathic,chronic inflammatory bowel disease(IBD)most often located in the rectum,but may involve the entire colon.Extra intestinal manifestations(EIMs)occur with varying frequency depending on the affected organ.The most common ones are musculoskeletal EIMs,affecting up to 33%-40%of IBD patients.These include,among others,inflammatory back pain,tendinitis,plantar fasciitis and arthritis.Only a few case reports in literature discuss Achilles tendinitis.CASE SUMMARY This report describes a patient with UC and Achilles tendinitis in whom after many unsuccessful attempts of treatment with sulfasalazine,mesalazine,glucocorticosteroids,infliximab and tofacitinib,a complete UC remission and resolution of Achilles tendinitis were achieved with the use of dual biologic therapy(DBT)-ustekinumab and adalimumab(ADA).CONCLUSION This case mentions rare EIMs of UC and suggests that DBT may be an alternative for patient with ulcerative colitis and EIMs.展开更多
This article is a comprehensive study based on research on the connection between diabetes mellitus(DM)and prostate cancer(PCa).It investigates the potential role of DM as an independent risk factor for PCa,delving in...This article is a comprehensive study based on research on the connection between diabetes mellitus(DM)and prostate cancer(PCa).It investigates the potential role of DM as an independent risk factor for PCa,delving into the biological links,including insulin resistance and hormonal changes.The paper critically analyzes previous studies that have shown varying results and introduces mendelian randomization as a method for establishing causality.It emphasizes the importance of early DM screening and lifestyle modifications in preventing PCa,and proposes future research directions for further understanding the DM-PCa relationship.展开更多
Chronic hepatitis B causes a liver disease characterized by inflammation of the liver parenchyma. The aim of this study was to investigate the evolution of biological parameters in patients treated with Tenofovir for ...Chronic hepatitis B causes a liver disease characterized by inflammation of the liver parenchyma. The aim of this study was to investigate the evolution of biological parameters in patients treated with Tenofovir for chronic B infection at the Commune V referral health center in Bamako. We obtained a prevalence of 14.15%. The most represented age group was 31 - 40 years, with 36.8%. The sex ratio was 1.44 in favour of men. Viral load was undetectable after 18 months of treatment in 25 patients (42.37%). Tenofovir, the 1st-line drug in Mali, is effective on the biological parameters monitored in patients.展开更多
With the rapid development of modern agriculture,the prevention and control of crop diseases and insect pests has become an important part to ensure the safety of agricultural production,the quality of agricultural pr...With the rapid development of modern agriculture,the prevention and control of crop diseases and insect pests has become an important part to ensure the safety of agricultural production,the quality of agricultural products and the safety of agricultural ecological environment.Although the effect of traditional chemical prevention and control technology is remarkable,the health risks and environmental problems brought by it should not be ignored.As a green and environmentally friendly means of prevention and control,biological prevention and control technology has gradually become a hot research topic and a trend of agricultural production.This paper is intended to comprehensively evaluate the social costs of biological control technologies for crop diseases and pests,including the health risks reduced,environmental improvements,economic benefits,and barriers to promotion,and put forward corresponding policy recommendations.展开更多
The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it...The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it has been reported that these are sensitive to the environmental conditions. For this reason, biopesticides products have been formulated based on secondary metabolites, recently. These biomolecules participate as biological control agent, such as: cyclic depsipeptides, amino acids, polyketides, polyphenols and terpenoids, affecting their morphology, life cycle and insect behavior. The use of secondary metabolites of entomopathogenic fungi opens the possibility of application in a more efficient way for the control of agricultural pests in a compatible with the environment and human health;therefore, it is important to know, analyzing the type of molecules, their effects, and their different methods of application.展开更多
基金funded by the National Key R&D Program of China (2022YFB4202102)the Key R&D Program of Ningxia Hui Autonomous Region (2022BEG02003)the Excellent Member of Youth Innovation Promotion Association CAS (No.Y202085)。
文摘The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau.
基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA17010505)The authors thank all the staff involved in the Scientific Experimental System in Near Space Project(SENSE)of the HH-19-2,HH-19-9,HH-20-7,and HH-21-5 flight missions.
文摘Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditions are analogous to those found on the surface of Mars and in the atmosphere of Venus,making Earth’s near space a unique natural laboratory for astrobiological research.To address essential astrobiological questions,teams from the Chinese Academy of Sciences(CAS)have developed a scientific balloon platform,the CAS Balloon-Borne Astrobiology Platform(CAS-BAP),to study the effects of near space environmental conditions on the biology and survival strategies of representative organisms in this terrestrial analog.Here,we describe the versatile Biological Samples Exposure Payload(BIOSEP)loaded on the CAS-BAP with respect to its structure and function.The primary function of BIOSEP is to expose appropriate biological specimens to the harsh conditions of near space and subsequently return the exposed samples to laboratories for further analysis.Four successful flight missions in near space from 2019 to 2021 have demonstrated the high reliability and efficiency of the payload in communicating between hardware and software units,recording environmental data,exposing sample containers,protecting samples from external contamination,and recovering samples.Understanding the effects of Earth’s near space conditions on biological specimens will provide valuable insights into the survival strategies of organisms in extreme environments and the search for life beyond Earth.The development of BIOSEP and associated biological exposure experiments will enhance our understanding of the potential for life on Mars and the habitability of the atmospheric regions of other planets in the solar system and beyond.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金supported by Postdoctoral Innovation Talents’ Support Programthe National Natural Science Foundation of China (32130099)+1 种基金the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-CXRC-038)Laboratory of Lingnan Modern Agriculture Project (NT2021005)。
文摘Valine is an essential amino acid and a type of branched-chain amino acid. Due to the involvement of branchedchain amino acids in various metabolic pathways, there has been a surge of interests in valine nutrition and its role in animal physiology. In pigs, the interactions between valine and other branched-chain amino acids or aromatic amino acids are complex. In this review, we delve into the interaction mechanism, metabolic pathways, and biological functions of valine. Appropriate valine supplementation not only enhances growth and reproductive performances, but also modulates gut microbiota and immune functions. Based on past observations and interpretations, we provide recommended feed levels of valine for weaned piglets, growing pigs, gilts, lactating sows, barrows and entire males. The summarized valine nutrient requirements for pigs at different stages offer valuable insights for future research and practical applications in animal husbandry.
基金supported by the fund from Natural Science Foundation of Zhejiang Province,China(LY17C200017)。
文摘Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.
基金funded by the Shandong Provincial Natural Science Foundation,China (ZR2020QC005)the National Natural Science Foundation of China (32272789)+3 种基金the National Natural Science Foundation of China (32000041)the Shandong Edible Fungus Agricultural Technology System (SDAIT-07-02)the Shandong Provincial Key Research and Development Plan (2021ZDSYS28)the Qingdao Agricultural University Scientific Research Foundation (6631120076)。
文摘White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.
基金supported by the National Natural Science Foundation of China(Grant Nos.32030099 and 32072670)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28020301)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2023326)the Enterprise Cooperation Projects of China(Grant No.Am20210407RD).
文摘Biological nitrification inhibitors(BNIs)are released from plant roots and inhibit the nitrification activity of microorganisms in soils,reducing NO_(3)^(‒)leaching and N2O emissions,and increasing nitrogenuse efficiency(NUE).Several recent studies have focused on the identification of new BNIs,yet little is known about the genetic loci that govern their biosynthesis and secretion.We applied a combined transcriptomic and metabolomic analysis to investigate possible biosynthetic pathways and transporters involved in the biosynthesis and release of BNI 1,9-decanediol(1,9-D),which was previously identified in rice root exudates.Our results linked four fatty acids,icosapentaenoic acid,linoleate,norlinolenic acid,and polyhydroxy-α,ω-divarboxylic acid,with 1,9-D biosynthesis and three transporter families,namely the ATP-binding cassette protein family,the multidrug and toxic compound extrusion family,and the major facilitator superfamily,with 1,9-D release from roots into the soil medium.Our finding provided candidates for further work on the genes implicated in the biosynthesis and secretion of 1,9-D and pinpoint genetic loci for crop breeding to improve NUE by enhancing 1,9-D secretion,with the potential to reduce NO_(3)^(‒)leaching and N2O emissions from agricultural soils.
基金Startup Fund for scientific research,Fujian Medical University,Grant/Award Number:2020QH1039Joint Funds for the Innovation of Science and Technology,Fujian Province,Grant/Award Number:2020Y9114 and 2020Y9119。
文摘The rodent running-wheel recording apparatus is a reliable approach for studying cir-cadian rhythm.This study demonstrated how to construct a simple and intelligent running-wheel recording system.The running wheel was attached to the cage's base,whereas the Hall sensor was attached to the cage's cover.Then,the RJ25 adaptor relayed the running signal to the main control board.Finally,the main control board was connected to the USB port of the computer with the USB connection.Data were collected using the online-accessible,self-created software Magturning.Through Magturning,generated data were saved and exported in real time.Afterward,the device was validated by collecting data on the locomotor activities of mice under dif-ferent light conditions.In conclusion,this new device can record circadian activity of rodents.Our device is appropriate for interdisciplinary investigations related to biological clock research.
基金financially supported by the National Natural Science Foundation of China(grant no.8217070298)Guangdong Basic and Applied Basic Research Foundation(grant no.2020A1515110770,2021A1515220011,2022A1515010335).
文摘Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
基金supported by the National Natural Science Foundation of China(No.32260292,32060277)National Key Research and Development Program of China(No.2020YFC1522200)+2 种基金Shanxi Provincial Basic Research Program of China(No.202303021212060)Shanxi Provincial Cultural Relics Technology Program of China(No.2023KT15)The Local Project Guided by the Central Government of Gansu Province(No.YDZX20216200001728).
文摘Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disadvantages of BSCs research for the development and application of BSCs theory.Bibliometric analysis of 2,186 BSCs literatures from Web of Science showed an exponential growth trend,as China and the United States as the top 2 in terms of publication volume.High quality publications are mainly from European and American countries,such as the United States,Germany and Spain.The top 3 publishers are Journal of Arid Environments,Soil Biology&Biochemistry and Plant and Soil,and disciplines include ecology,environmental science,and soil science,etc..Research institutions mainly affiliate to the Chinese Academy of Sciences,United States Department of the Interior,United States Geological Survey,Hebrew University of Jerusalem,Consejo Superior de Investigaciones Cientificas,and Universidad Rey Juan Carlos.Authors mainly come from United States,Israel,Spain and China.Funds are mainly from the National Natural Science Foundation of China,Spanish Government,Chinese Academy of Sciences,and National Science Foundation of the United States.Biological soil crusts(biocrusts,cyanobacteria,lichens,moss crusts,bryophytes),drylands,climate change,photosynthesis and desert are high-frequency keywords.Future research will focus on the driving mechanisms of BSCs on global biogeochemical cycles,maintaining global biodiversity on important ecological processes,global C,N,and P cycles.The impact on biological invasion,sandstorms,and water balance,multifunctional and reciprocal mechanisms for maintaining the stability of desert and sandy ecosystems,and impact on the formulation of management policies for arid ecosystems,corresponding to global climate change,and the estimation of regional,local,and microscale distribution of BSCs based on machine deep learning modeling gradually focus on.The ecosystem service functions of BSCs,the soil and water conservation and soil stability mediated by BSCs in arid and semi-arid regions,and the excavation of stress resistant genes for BSCs will be emphasized.
基金supported by the National Key Technologies R & D Program of China during the 14th Five-Year Plan period (No. 2021YFD1700904)Henan Provincial Important Project (No. 221100320200)+1 种基金State Key Laboratory of Wheat and Maize Crap Science (No. SKL2023ZZ09)the Henan Center for Outstanding Overseas Scientists (No. GZS2021007)。
文摘Electronic nose(eNose) is a modern bioelectronic sensor for monitoring biological processes that convert CO_(2) into valueadded products, such as products formed during photosynthesis and microbial fermentation. eNose technology uses an array of sensors to detect and quantify gases, including CO_(2), in the air. This study briefly introduces the concept of eNose technology and potential applications thereof in monitoring CO_(2) conversion processes. It also provides background information on biological CO_(2) conversion processes. Furthermore, the working principles of eNose technology vis-à-vis gas detection are discussed along with its advantages and limitations versus traditional monitoring methods. This study also provides case studies that have used this technology for monitoring biological CO_(2) conversion processes. eNose-predicted measurements were observed to be completely aligned with biological parameters for R~2 values of 0.864, 0.808, 0.802, and 0.948. We test eNose technology in a variety of biological settings, such as algae farms or bioreactors, to determine its effectiveness in monitoring CO_(2) conversion processes. We also explore the potential benefits of employing this technology vis-à-vis monitoring biological CO_(2) conversion processes, such as increased reaction efficiency and reduced costs versus traditional monitoring methods. Moreover, future directions and challenges of using this technology in CO_(2) capture and conversion have been discussed. Overall, we believe this study would contribute to developing new and innovative methods for monitoring biological CO_(2) conversion processes and mitigating climate change.
基金supported by the National Natural Science Foundation of China(32088101)National key Research and Development Program of China(2017YFC1700105,2021YFA1301603).
文摘Objective To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine.
基金supported by the NSF(No.DMS-1813071)(Chou)and the AFSOR(No.FA9550-22-1-0011)(Xiu).
文摘We present a numerical approach for modeling unknown dynamical systems using partially observed data,with a focus on biological systems with(relatively)complex dynamical behavior.As an extension of the recently developed deep neural network(DNN)learning methods,our approach is particularly suitable for practical situations when(i)measurement data are available for only a subset of the state variables,and(ii)the system parameters cannot be observed or measured at all.We demonstrate that,with a properly designed DNN structure with memory terms,effective DNN models can be learned from such partially observed data containing hidden parameters.The learned DNN model serves as an accurate predictive tool for system analysis.Through a few representative biological problems,we demonstrate that such DNN models can capture qualitative dynamical behavior changes in the system,such as bifurcations,even when the parameters controlling such behavior changes are completely unknown throughout not only the model learning process but also the system prediction process.The learned DNN model effectively creates a“closed”model involving only the observables when such a closed-form model does not exist mathematically.
基金Supported by CAMS Innovation Fund for Medical Sciences,No.2020-I2M-C&T-A-004National High Level Hospital Clinical Research Funding,No.2022-PUMCH-A-210,No.2022-PUMCH-B-041,and No.2022-PUMCH-C-025and National Key R&D Program of China,No.2020YFE0201600.
文摘Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address this issue,exhibiting significant potential for enhancing wound healing rates,improving wound quality,and promoting skin regeneration.However,the use of stem cells in skin regeneration presents several challenges.Recently,stem cells and biomaterials have been identified as crucial components of the wound-healing process.Combination therapy involving the development of biocompatible scaffolds,accompanying cells,multiple biological factors,and structures resembling the natural extracellular matrix(ECM)has gained considerable attention.Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells,providing them with an environment conducive to growth,similar to that of the ECM.These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing.This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing,emphasizing their capacity to facilitate stem cell adhesion,proliferation,differentiation,and paracrine functions.Additionally,we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
文摘BACKGROUND Ulcerative colitis(UC)is an idiopathic,chronic inflammatory bowel disease(IBD)most often located in the rectum,but may involve the entire colon.Extra intestinal manifestations(EIMs)occur with varying frequency depending on the affected organ.The most common ones are musculoskeletal EIMs,affecting up to 33%-40%of IBD patients.These include,among others,inflammatory back pain,tendinitis,plantar fasciitis and arthritis.Only a few case reports in literature discuss Achilles tendinitis.CASE SUMMARY This report describes a patient with UC and Achilles tendinitis in whom after many unsuccessful attempts of treatment with sulfasalazine,mesalazine,glucocorticosteroids,infliximab and tofacitinib,a complete UC remission and resolution of Achilles tendinitis were achieved with the use of dual biologic therapy(DBT)-ustekinumab and adalimumab(ADA).CONCLUSION This case mentions rare EIMs of UC and suggests that DBT may be an alternative for patient with ulcerative colitis and EIMs.
文摘This article is a comprehensive study based on research on the connection between diabetes mellitus(DM)and prostate cancer(PCa).It investigates the potential role of DM as an independent risk factor for PCa,delving into the biological links,including insulin resistance and hormonal changes.The paper critically analyzes previous studies that have shown varying results and introduces mendelian randomization as a method for establishing causality.It emphasizes the importance of early DM screening and lifestyle modifications in preventing PCa,and proposes future research directions for further understanding the DM-PCa relationship.
文摘Chronic hepatitis B causes a liver disease characterized by inflammation of the liver parenchyma. The aim of this study was to investigate the evolution of biological parameters in patients treated with Tenofovir for chronic B infection at the Commune V referral health center in Bamako. We obtained a prevalence of 14.15%. The most represented age group was 31 - 40 years, with 36.8%. The sex ratio was 1.44 in favour of men. Viral load was undetectable after 18 months of treatment in 25 patients (42.37%). Tenofovir, the 1st-line drug in Mali, is effective on the biological parameters monitored in patients.
文摘With the rapid development of modern agriculture,the prevention and control of crop diseases and insect pests has become an important part to ensure the safety of agricultural production,the quality of agricultural products and the safety of agricultural ecological environment.Although the effect of traditional chemical prevention and control technology is remarkable,the health risks and environmental problems brought by it should not be ignored.As a green and environmentally friendly means of prevention and control,biological prevention and control technology has gradually become a hot research topic and a trend of agricultural production.This paper is intended to comprehensively evaluate the social costs of biological control technologies for crop diseases and pests,including the health risks reduced,environmental improvements,economic benefits,and barriers to promotion,and put forward corresponding policy recommendations.
文摘The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it has been reported that these are sensitive to the environmental conditions. For this reason, biopesticides products have been formulated based on secondary metabolites, recently. These biomolecules participate as biological control agent, such as: cyclic depsipeptides, amino acids, polyketides, polyphenols and terpenoids, affecting their morphology, life cycle and insect behavior. The use of secondary metabolites of entomopathogenic fungi opens the possibility of application in a more efficient way for the control of agricultural pests in a compatible with the environment and human health;therefore, it is important to know, analyzing the type of molecules, their effects, and their different methods of application.