Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,posi...Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,positive subnetwork(PSN) and negative sub-network(NSN).The neuron functions of PSN and NSN are designed according to the increased and decreased secretion functions of hormone,respectively.In order to make the novel neural network learn quickly,the novel neuron based on some characteristics of NEIs is also redesigned.Besides the normal input signals,two control signals are considered in the proposed solution.One is the enable/disable signal,and the other is the slope control signal.The former can modify the structure of NEI-NN,and the later can regulate the evolutionary speed of NEINN.The NEI-NN can obtain the optimized network structure by using error back-propagation(BP) learning algorithm.Since the modeling of the beam pumping unit is very difficult by using the conventional method,the modeling of bean bump unit is chosen to examine the performance of the NEI-NN.The experiment results show that the optimized structure and learning speed of NEI-NN are better than those of the conventional neural network.展开更多
An immune algorithm-based approach was developed to optimize a feedforward neural network. The network architecture, activation functions, and training method were encoded as individuals with an ap- propriate method f...An immune algorithm-based approach was developed to optimize a feedforward neural network. The network architecture, activation functions, and training method were encoded as individuals with an ap- propriate method for individual selection. The immune feedforward neural network is then applied to fault detection of water quality monitoring equipment. This gives better performance than a feedforward neural network.展开更多
The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug...The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categoriz- ing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomic software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.展开更多
An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism...An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment.展开更多
Inspired by the immune theory and multi-agent systems, an immune multi-agent active defense model for network intrusion is established. The concept of immune agent is introduced, and its running mechanism is establish...Inspired by the immune theory and multi-agent systems, an immune multi-agent active defense model for network intrusion is established. The concept of immune agent is introduced, and its running mechanism is established. The method, which uses antibody concentration to quantitatively describe the degree of intrusion danger, is presented. This model implements the multi-layer and distributed active defense mechanism for network intrusion. The experiment results show that this model is a good solution to the network security defense.展开更多
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa...In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.展开更多
Coal flotation is widely used to separate commercially valuable coal from the fine ore slurry, and is an industrial process with nonlinear, multivariable, time-varying and long time-delay characteristics. The online d...Coal flotation is widely used to separate commercially valuable coal from the fine ore slurry, and is an industrial process with nonlinear, multivariable, time-varying and long time-delay characteristics. The online detection of ash content of products as the operation performance evaluation in the flotation system is extraordinarily difficult because of the low solid content and numerous micro-bubbles in the slurry. Moreover, it is time-consuming by manual analysis. Consequently, the optimal separation is not usually maintained. A novel technique, called the neuro-immune algorithm (NIA) inspired by the biological nervous and immune systems, is presented in this paper for predicting the ash content of clean coal and performing the optimizing control to the coal flotation system. The proposed algorithm integrates the deeply-studied artificial neural network (ANN) and the developing artificial immune system (AIS). A two-layer back-propagation network was constructed offline based on the historical process data under the best system situation, using five parameters: the flow and the density of raw slurry, the input flows of water, the kerosene and the GF oil, as the inputs and the ash content of clean coal as the output. The immune cell of AIS is made up of six parameters above as the antigen. The cytokine based clone selection algorithm is used to produce the relative antibody. The detailed computation procedures about the hybrid neuro-immune algorithm are minutely discussed. The ash content of clean coal was predicted by NIA using the practical process data s: (308.6 174.7 146.1 43.6 4.0 9.4), and the absolute difference between the actual and computed ash content values was 0.0967%. The optimizing control on NIA was simulated considering two different situations where the ash content of clean coal was controlled downward from 10.00% or upward from 9.20% predicted by ANN to the target value 9.50%. The results indicate that the target ash content and the value of controlling parameters are obtained after several control cycles.展开更多
基金the Key Project of the National Natural Science Foundation of China(No.61134009)National Natural Science Foundations of China(Nos.61473078,61271001)+5 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)the Fundamental Research Funds for the Central Universities,China(No.09CX04026A)Excellent Youth and Middle Age Scientists Fund of Shandong Province,China(No.BS2010DX038)Fundamental Research Funds for the Central Universities,China(No.14CX02171A)
文摘Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,positive subnetwork(PSN) and negative sub-network(NSN).The neuron functions of PSN and NSN are designed according to the increased and decreased secretion functions of hormone,respectively.In order to make the novel neural network learn quickly,the novel neuron based on some characteristics of NEIs is also redesigned.Besides the normal input signals,two control signals are considered in the proposed solution.One is the enable/disable signal,and the other is the slope control signal.The former can modify the structure of NEI-NN,and the later can regulate the evolutionary speed of NEINN.The NEI-NN can obtain the optimized network structure by using error back-propagation(BP) learning algorithm.Since the modeling of the beam pumping unit is very difficult by using the conventional method,the modeling of bean bump unit is chosen to examine the performance of the NEI-NN.The experiment results show that the optimized structure and learning speed of NEI-NN are better than those of the conventional neural network.
基金Supported by the National Natural Science Foundation of China(No.61005047)the Natural Science Foundation of Jiangsu Province of China (No.BK2010214)
文摘An immune algorithm-based approach was developed to optimize a feedforward neural network. The network architecture, activation functions, and training method were encoded as individuals with an ap- propriate method for individual selection. The immune feedforward neural network is then applied to fault detection of water quality monitoring equipment. This gives better performance than a feedforward neural network.
文摘The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categoriz- ing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomic software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProjects(20040533035, 20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment.
基金Supported by the National Natural Science Foundation of China (60373110, 60573130, 60502011)
文摘Inspired by the immune theory and multi-agent systems, an immune multi-agent active defense model for network intrusion is established. The concept of immune agent is introduced, and its running mechanism is established. The method, which uses antibody concentration to quantitatively describe the degree of intrusion danger, is presented. This model implements the multi-layer and distributed active defense mechanism for network intrusion. The experiment results show that this model is a good solution to the network security defense.
基金Supported by the Major State Basic Research Development Program of China (2012CB720500)the National Natural Science Foundation of China (Key Program: U1162202)+1 种基金the National Natural Science Foundation of China (General Program:61174118)Shanghai Leading Academic Discipline Project (B504)
文摘In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.
基金the financial support from the Fundamental Research Funds for the Central universities of China (No. 2009KH07)
文摘Coal flotation is widely used to separate commercially valuable coal from the fine ore slurry, and is an industrial process with nonlinear, multivariable, time-varying and long time-delay characteristics. The online detection of ash content of products as the operation performance evaluation in the flotation system is extraordinarily difficult because of the low solid content and numerous micro-bubbles in the slurry. Moreover, it is time-consuming by manual analysis. Consequently, the optimal separation is not usually maintained. A novel technique, called the neuro-immune algorithm (NIA) inspired by the biological nervous and immune systems, is presented in this paper for predicting the ash content of clean coal and performing the optimizing control to the coal flotation system. The proposed algorithm integrates the deeply-studied artificial neural network (ANN) and the developing artificial immune system (AIS). A two-layer back-propagation network was constructed offline based on the historical process data under the best system situation, using five parameters: the flow and the density of raw slurry, the input flows of water, the kerosene and the GF oil, as the inputs and the ash content of clean coal as the output. The immune cell of AIS is made up of six parameters above as the antigen. The cytokine based clone selection algorithm is used to produce the relative antibody. The detailed computation procedures about the hybrid neuro-immune algorithm are minutely discussed. The ash content of clean coal was predicted by NIA using the practical process data s: (308.6 174.7 146.1 43.6 4.0 9.4), and the absolute difference between the actual and computed ash content values was 0.0967%. The optimizing control on NIA was simulated considering two different situations where the ash content of clean coal was controlled downward from 10.00% or upward from 9.20% predicted by ANN to the target value 9.50%. The results indicate that the target ash content and the value of controlling parameters are obtained after several control cycles.