White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrien...White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.展开更多
Pigs experience biological stress such as physiological, environmental, and social challenges when weaned from the sow. The process of weaning is one of the most stressful events in the pig's life that can contribute...Pigs experience biological stress such as physiological, environmental, and social challenges when weaned from the sow. The process of weaning is one of the most stressful events in the pig's life that can contribute to intestinal and immune system dysfunctions that result in reduced pig health, growth, and feed intake, particularly during the first week after weaning. Technological improvements in housing, nutrition, health, and management have been used to minimize some of the adverse effects of weaning stress, but a greater understanding of the biological impact of stress is needed to improve strategies to overcome weaning stress. The focus of this review paper is to briefly describe how the biological stress associated with weaning impacts intestinal morphology, structure, physiology, and intestinal immune responses that can impact subsequent production efficiencies such as growth, intake, morbidity, and mortality.展开更多
This review paper attempts to approximate the concept of biological stress to the stress concept in Physics using the phenomenological view of physics to discuss the source of generator forces of biological stress sta...This review paper attempts to approximate the concept of biological stress to the stress concept in Physics using the phenomenological view of physics to discuss the source of generator forces of biological stress state. Based on the literature, parallels are drawn between the two concepts and a discussion on the steady state in open systems and homeostatic state in biological systems is developed. Using the concepts of thermodynamic entropy and informational entropy, and comparing stress in living systems and nonliving, we attempt to build a basis for a view of stress as a principle of nature linked to the adaptability property of matter, opposing entropy. It is known that the increasing number of microstates possible in a complex system increases the entropy. In that way, entropy is related to the amount of additional information needed to specify the exact physical state of a system, given its macroscopic specification. By controlling the metabolic processes (catabolism-anabolism) to decrease the entropy, stress reduces the number of possible states for which the living system could evolve, avoiding the loss of “life information”, preserving its characteristics and preventing its extinction. The loss of function of a species within an ecosystem or of cells within an organ can be showing that the limits of the stress principle were “transgressed”. That is, the intensity and/or duration of stress exceeded the capacity of living organism to process of information extracted from stressor and reprogram its physiological mechanisms, activating its adaptability process, while its internal balance is preserved.展开更多
Ground-level ozone pollution is a menace for vegetation in the northern hemisphere,limiting photosynthetic pigments and suppressing photosynthesis in trees and other types of plants.Phaeophytinization is the process o...Ground-level ozone pollution is a menace for vegetation in the northern hemisphere,limiting photosynthetic pigments and suppressing photosynthesis in trees and other types of plants.Phaeophytinization is the process of converting chlorophylls into phaeophytins,for example by acidifi cation.Ozone is a highly oxidizing molecule and well known to degrade chlorophylls;however,the eff ect of ozone on phaeophytinization in leaves of higher plants is largely unknown.To reveal ozone eff ect on phaeophytinization and evaluate the potential of phaeophytinization as an index of ozone stress in trees,the absorbance at the optical density of 665 nm was measured before(OD_(665))and after(OD_(665a))acidifi cation in three independent experiments with nearly 30 conditions of ozone exposure.Both current ambient and elevated ozone widely aff ected phaeophytinization,as indicated by decreases or increases in the phaeophytinization quotient OD_(665)/OD_(665a).These eff ects were commonly moderate to large in magnitude and practically signifi cant,and occurred even in ozone-asymptomatic leaves.It emerges that the ozone eff ect on phaeophytinization is bimodal,likely depending on the intensity of ozone stress.These results indicate a promising feature of OD_(665)/OD_(665a)as a thorough index of ozone stress in the future,but further studies are needed to reveal the underlying biochemical mechanisms of the bimodal eff ect on phaeophytinization.展开更多
The immune responses of plants to foreign pathogens have developed relevant defense mechanisms, which formed complicated disease resistant signal transduction pathways. Salicylic acid(SA), jasmonic acid(JA)/Ethyl...The immune responses of plants to foreign pathogens have developed relevant defense mechanisms, which formed complicated disease resistant signal transduction pathways. Salicylic acid(SA), jasmonic acid(JA)/Ethylene(ET) and brassi- nosteroid (BR) could trigger the immune response to different pathogens in plants, making the plants show some resistance to the pathogens. The study on the trans- duction pathways of these three disease-resistant signals were introduced to provide some useful suggestions for the study on the transduction of disease-resistant sig- nals in plants.展开更多
Phytohormone is a key regulator of plant growth and development.It has important effects on plant under biotic and abiotic stresses.However,the dose control of phytohormone is always a difficult problem in the applica...Phytohormone is a key regulator of plant growth and development.It has important effects on plant under biotic and abiotic stresses.However,the dose control of phytohormone is always a difficult problem in the application process,which limits the application range of phytohormone.Nanotechnology,because of its characteristics of controlled release,targeted therapy,non-pollution,high adsorption,lower volatilization of active substances,and low dosage of drug,comes into researchers’vision.Nanomaterials were directly applicated on crops at the early stage,and then active substances,such as pesticides,were encapsulated with nanomaterials,also achieved good results in the field.Currently,more and more attentions have been paid to nano-enabled delivery of phytohormones to plants,and formed a new field in agriculture.In present work,we reviewed the existing literatures,focused on the important regulatory roles of phytohormones in plant growth and development and their application potential,and the development and application prospect of nanomaterials combined with phytohormones were also have been discussed.展开更多
基金funded by the Shandong Provincial Natural Science Foundation,China (ZR2020QC005)the National Natural Science Foundation of China (32272789)+3 种基金the National Natural Science Foundation of China (32000041)the Shandong Edible Fungus Agricultural Technology System (SDAIT-07-02)the Shandong Provincial Key Research and Development Plan (2021ZDSYS28)the Qingdao Agricultural University Scientific Research Foundation (6631120076)。
文摘White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.
文摘Pigs experience biological stress such as physiological, environmental, and social challenges when weaned from the sow. The process of weaning is one of the most stressful events in the pig's life that can contribute to intestinal and immune system dysfunctions that result in reduced pig health, growth, and feed intake, particularly during the first week after weaning. Technological improvements in housing, nutrition, health, and management have been used to minimize some of the adverse effects of weaning stress, but a greater understanding of the biological impact of stress is needed to improve strategies to overcome weaning stress. The focus of this review paper is to briefly describe how the biological stress associated with weaning impacts intestinal morphology, structure, physiology, and intestinal immune responses that can impact subsequent production efficiencies such as growth, intake, morbidity, and mortality.
文摘This review paper attempts to approximate the concept of biological stress to the stress concept in Physics using the phenomenological view of physics to discuss the source of generator forces of biological stress state. Based on the literature, parallels are drawn between the two concepts and a discussion on the steady state in open systems and homeostatic state in biological systems is developed. Using the concepts of thermodynamic entropy and informational entropy, and comparing stress in living systems and nonliving, we attempt to build a basis for a view of stress as a principle of nature linked to the adaptability property of matter, opposing entropy. It is known that the increasing number of microstates possible in a complex system increases the entropy. In that way, entropy is related to the amount of additional information needed to specify the exact physical state of a system, given its macroscopic specification. By controlling the metabolic processes (catabolism-anabolism) to decrease the entropy, stress reduces the number of possible states for which the living system could evolve, avoiding the loss of “life information”, preserving its characteristics and preventing its extinction. The loss of function of a species within an ecosystem or of cells within an organ can be showing that the limits of the stress principle were “transgressed”. That is, the intensity and/or duration of stress exceeded the capacity of living organism to process of information extracted from stressor and reprogram its physiological mechanisms, activating its adaptability process, while its internal balance is preserved.
基金partly supported by the National Natural Science Foundation of China (No. 4210070867)the Research grant#201605 of the Forestry and Forest Products Research Institute (FFPRI),JapanKAKENHI grant#JP17F17102 of the Japan Society for the Promotion of Science (JSPS)
文摘Ground-level ozone pollution is a menace for vegetation in the northern hemisphere,limiting photosynthetic pigments and suppressing photosynthesis in trees and other types of plants.Phaeophytinization is the process of converting chlorophylls into phaeophytins,for example by acidifi cation.Ozone is a highly oxidizing molecule and well known to degrade chlorophylls;however,the eff ect of ozone on phaeophytinization in leaves of higher plants is largely unknown.To reveal ozone eff ect on phaeophytinization and evaluate the potential of phaeophytinization as an index of ozone stress in trees,the absorbance at the optical density of 665 nm was measured before(OD_(665))and after(OD_(665a))acidifi cation in three independent experiments with nearly 30 conditions of ozone exposure.Both current ambient and elevated ozone widely aff ected phaeophytinization,as indicated by decreases or increases in the phaeophytinization quotient OD_(665)/OD_(665a).These eff ects were commonly moderate to large in magnitude and practically signifi cant,and occurred even in ozone-asymptomatic leaves.It emerges that the ozone eff ect on phaeophytinization is bimodal,likely depending on the intensity of ozone stress.These results indicate a promising feature of OD_(665)/OD_(665a)as a thorough index of ozone stress in the future,but further studies are needed to reveal the underlying biochemical mechanisms of the bimodal eff ect on phaeophytinization.
基金Supported by the National Natural Science Foundation of China(31360262)Zhuke Contract(2012HK209-38)the Innovation Capacity Platform Construction Project of Guizhou Science and Technology Department(2011018)~~
文摘The immune responses of plants to foreign pathogens have developed relevant defense mechanisms, which formed complicated disease resistant signal transduction pathways. Salicylic acid(SA), jasmonic acid(JA)/Ethylene(ET) and brassi- nosteroid (BR) could trigger the immune response to different pathogens in plants, making the plants show some resistance to the pathogens. The study on the trans- duction pathways of these three disease-resistant signals were introduced to provide some useful suggestions for the study on the transduction of disease-resistant sig- nals in plants.
基金supported by the National Natural Science Foundation of China(No.32160655)Breeding Program of Guizhou University(No.201931).
文摘Phytohormone is a key regulator of plant growth and development.It has important effects on plant under biotic and abiotic stresses.However,the dose control of phytohormone is always a difficult problem in the application process,which limits the application range of phytohormone.Nanotechnology,because of its characteristics of controlled release,targeted therapy,non-pollution,high adsorption,lower volatilization of active substances,and low dosage of drug,comes into researchers’vision.Nanomaterials were directly applicated on crops at the early stage,and then active substances,such as pesticides,were encapsulated with nanomaterials,also achieved good results in the field.Currently,more and more attentions have been paid to nano-enabled delivery of phytohormones to plants,and formed a new field in agriculture.In present work,we reviewed the existing literatures,focused on the important regulatory roles of phytohormones in plant growth and development and their application potential,and the development and application prospect of nanomaterials combined with phytohormones were also have been discussed.