The superstructure optimization of biomass to biomethane system through digestion is conducted in this work. The system encompasses biofeedstock collection and transportation, anaerobic digestion, biogas upgrading, an...The superstructure optimization of biomass to biomethane system through digestion is conducted in this work. The system encompasses biofeedstock collection and transportation, anaerobic digestion, biogas upgrading, and digestate recycling. We propose a multicriteria mixed integer nonlinear programming(MINLP) model that seeks to minimize the energy consumption and maximize the green degree and the biomethane production constrained by technology selection, mass balance, energy balance, and environmental impact. A multi-objective MINLP model is proposed and solved with a fast nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ). The resulting Pareto-optimal surface reveals the trade-off among the conflicting objectives. The optimal results indicate quantitatively that higher green degree and biomethane production objectives can be obtained at the expense of destroying the performance of the energy consumption objective.展开更多
基金the financial support from the National Basic Research Program of China(No.2013CB733506)the National Natural Science Fund for Distinguished Young Scholars(No.21425625)National Natural Science Foundation of China(No.21576269,21576262)
文摘The superstructure optimization of biomass to biomethane system through digestion is conducted in this work. The system encompasses biofeedstock collection and transportation, anaerobic digestion, biogas upgrading, and digestate recycling. We propose a multicriteria mixed integer nonlinear programming(MINLP) model that seeks to minimize the energy consumption and maximize the green degree and the biomethane production constrained by technology selection, mass balance, energy balance, and environmental impact. A multi-objective MINLP model is proposed and solved with a fast nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ). The resulting Pareto-optimal surface reveals the trade-off among the conflicting objectives. The optimal results indicate quantitatively that higher green degree and biomethane production objectives can be obtained at the expense of destroying the performance of the energy consumption objective.