<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of sh...<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of shark dorsal fin. After preliminary structural design, the computational fluid dynamics (CFD) simulation showed that the bionic emitter exhibited superior anti-clogging performance and reasonable hydraulic performance. The passage rate of particles of the bionic emitter in simulation reached 96.3% which was 37.6% higher than 70% of traditional emitter, and the discharge exponent reached 0.4995 which was close to traditional emitter. Physical experiments were consistent with the CFD results, which confirmed the correctness of simulation. After a short cycle anti-clogging performance experiment, the bionic emitter still maintained 96.09% of the initial flow rate. </div>展开更多
To design effective and easy-to-manufacture conductive heat channels, a heuristic method by emulating the natural branch systems is suggested. The design process of the method is divided into two steps, which are the ...To design effective and easy-to-manufacture conductive heat channels, a heuristic method by emulating the natural branch systems is suggested. The design process of the method is divided into two steps, which are the principal channel design and the lateral channel design. During the process, the width of each channel is controlled by the bifurcation law, and the end point of the channel is located at the point with the maximum temperature while the start points of the principal channel and the lateral channel are respectively determined by the location of the heat sink and the law of the minimum thermal resistance. Four design examples with different boundary conditions are studied by the suggested method, and the design results are compared with that of the traditional structural topology optimization method. Not only lower maximum temperature and relatively uniform distribution of temperature are obtained by the suggested method, but also straight channels are achieved without gray element, which is easy to manufacture. The suggested method inspired by the natural branch systems can provide an effective solution for heat channel design in the heat dissipation structures.展开更多
文摘<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of shark dorsal fin. After preliminary structural design, the computational fluid dynamics (CFD) simulation showed that the bionic emitter exhibited superior anti-clogging performance and reasonable hydraulic performance. The passage rate of particles of the bionic emitter in simulation reached 96.3% which was 37.6% higher than 70% of traditional emitter, and the discharge exponent reached 0.4995 which was close to traditional emitter. Physical experiments were consistent with the CFD results, which confirmed the correctness of simulation. After a short cycle anti-clogging performance experiment, the bionic emitter still maintained 96.09% of the initial flow rate. </div>
文摘To design effective and easy-to-manufacture conductive heat channels, a heuristic method by emulating the natural branch systems is suggested. The design process of the method is divided into two steps, which are the principal channel design and the lateral channel design. During the process, the width of each channel is controlled by the bifurcation law, and the end point of the channel is located at the point with the maximum temperature while the start points of the principal channel and the lateral channel are respectively determined by the location of the heat sink and the law of the minimum thermal resistance. Four design examples with different boundary conditions are studied by the suggested method, and the design results are compared with that of the traditional structural topology optimization method. Not only lower maximum temperature and relatively uniform distribution of temperature are obtained by the suggested method, but also straight channels are achieved without gray element, which is easy to manufacture. The suggested method inspired by the natural branch systems can provide an effective solution for heat channel design in the heat dissipation structures.