Wireless multimedia sensor networks (WMSN) are emerging to serve for the collection of acoustic and image information. In the WMSN, the microphone is usually employed to function as sensor nodes for the acquisition of...Wireless multimedia sensor networks (WMSN) are emerging to serve for the collection of acoustic and image information. In the WMSN, the microphone is usually employed to function as sensor nodes for the acquisition of acoustic data. However, those microphone sensors are needed to be placed close with sound source and cannot detect sound signal through certain obstacles. To overcome the shortcomings of microphone sensor, we develop a new type of bioradar sensor to achieve non-contact speech detection and investigate theoretically the mechanism of bioradar for speech detection. Results show that the system can successfully detect speech at some distance and even through non-metallic objects with certain thickness. In addition, in order to suppress the noise and improve the quality of the detected speech, we use spectral subtraction and Wiener filtering algorithm respectively to enhance the bioradar speech and evaluate the performance of the two methods using spectrogram.展开更多
文摘Wireless multimedia sensor networks (WMSN) are emerging to serve for the collection of acoustic and image information. In the WMSN, the microphone is usually employed to function as sensor nodes for the acquisition of acoustic data. However, those microphone sensors are needed to be placed close with sound source and cannot detect sound signal through certain obstacles. To overcome the shortcomings of microphone sensor, we develop a new type of bioradar sensor to achieve non-contact speech detection and investigate theoretically the mechanism of bioradar for speech detection. Results show that the system can successfully detect speech at some distance and even through non-metallic objects with certain thickness. In addition, in order to suppress the noise and improve the quality of the detected speech, we use spectral subtraction and Wiener filtering algorithm respectively to enhance the bioradar speech and evaluate the performance of the two methods using spectrogram.