Spores of Bacillus subtilis are being used as probiotics and competitive exclusion agents for animal consumption. Commercial production media often include relatively expensive components of animal origin that are a p...Spores of Bacillus subtilis are being used as probiotics and competitive exclusion agents for animal consumption. Commercial production media often include relatively expensive components of animal origin that are a potential source for the presence of adventious agents, therefore undesirable for use in production scale. In this study a new animal-free component, chemically defined medium, was tested for B. subtilis spore production. Medium composition was optimized with respect to vitamin composition, carbon, nitrogen and calcium concentrations. A fed-batch bioprocess was developed, being the effect on sporulation of the carbon to nitrogen ratio at the end of the exponential growth phase studied. The developed strategy consisted of an initial and a final batch phase and an intermediate fed-batch phase with the addition of a feeding solution containing glucose and calcium and the addition of a feeding solution of ammonium sulphate, using an exponential and a constant feeding profile, respectively. Using the fed-batch strategy, it was possible to achieve a maximum spore production of 3.6 × 1010 spores/mL, corresponding to a 5 folds increase when compared to the preliminary batch experiments.展开更多
Recent years have seen the development of a number of mathematical models for the description of the simultaneous transport of microorganisms and bioreactive solutes in porous media. Most models are based on the adve...Recent years have seen the development of a number of mathematical models for the description of the simultaneous transport of microorganisms and bioreactive solutes in porous media. Most models are based on the advection dispersion equation, with terms added to account for interactions with the surfaces of the solid matrix, transformations and microbial activities. Those models based on the advection dispersion equation have all been shown to represent laboratory experimental data adequately although various assumptions have been made concerning the pore scale distribution of bacteria. This paper provides an overview of the recent work on modelling the transport and fate of microorganisms and bioreactive solutes in porous media and examines the different assumptions regarding the pore scale distribution of microorganisms.展开更多
Bioreactive thin-layer capping(BTC)with biozeolite provides a potential remediation design that can sustainably treat N contamination from sediment and overlying water in eutrophic water bodies.Nitrogen(N)reductio...Bioreactive thin-layer capping(BTC)with biozeolite provides a potential remediation design that can sustainably treat N contamination from sediment and overlying water in eutrophic water bodies.Nitrogen(N)reduction using BTC with biozeolite was examined in a field incubation experiment in a eutrophic river in Yangzhou,Jiangsu Province,China.The biozeolite was zeolite with attached bacteria,including two isolated heterotrophic nitrifiers(Bacillus spp.)and two isolated aerobic denitrifiers(Acinetobacter spp.).The results showed that the total nitrogen(TN)reduction efficiency of the overlying water by BTC with biozeolite(with thickness of about 2 mm)reached a maximum(56.69%)at day 34,and simultaneous heterotrophic nitrification and aerobic denitrification occurred in the BTC system until day 34.There was a significant difference in the TN concentrations of the overlying water between biozeolite capping and control(t-test;p〈0.05).The biozeolite had very strong in situ bioregeneration ability.Carbon was the main source of nitrifier growth.However,both dissolved oxygen(DO)and carbon concentrations affected denitrifier growth.In particular,DO concentrations greater than 3 mg/L inhibited denitrifier growth.Therefore,BTC with biozeolite was found to be a feasible technique to reduce N in a eutrophic river.However,it is necessary to further strengthen the adaptability of aerobic denitrifiers through changing domestication methods or conditions.展开更多
Interactions between chemodiverse dissolved organic matter(DOM)and biodiverse microbes are governed by a myriad of intrinsic and extrinsic factors which are not well understood.Here,we update and bridge the gap of thi...Interactions between chemodiverse dissolved organic matter(DOM)and biodiverse microbes are governed by a myriad of intrinsic and extrinsic factors which are not well understood.Here,we update and bridge the gap of this interdisciplinary theme comprehensively.At an ecosystem level,aquatic ecosystems dominated by algae-sourced DOM(e.g.,eutrophic lake or coastal upwelling areas)harbor more biolabile DOM,such as directly assimilable monomers and readily hydrolysable biopolymers.However,other ecosystems prevailed by DOM supply from soil and vascular plants(e.g.,river or wetland)have more biorefractory DOM,such as low molecular weight(LMW)residue of aliphatic C skeletons and geopolymers.A variety of heterotrophic bacteria,archaea,fungi,phagotrophic protists,and even photoautotrophic phytoplankton shows genomic and/or culturing experimental evidence of being able to process a diverse type of organics.The various biodegradable organics have different chemical structures and chemical bonds such as carbohydrates,amino acids,proteins,lignins,lipids,carboxylic acids,humic acids,hydrocarbons,and nanoplastics.Meanwhile,bio-production of metabolism intermediates and/or biorefractory organics(e.g.,carboxyl-rich alicyclic molecules,CRAM)is observed despite general decay of bulk dissolved organic carbon(DOC)during bioassay experiments.In particular,emerging evidence shows that archaea contribute significantly to biomass in the marine mesopelagic zone and subsurface environments and their abundance often increases with depth in sediments.Furthermore,not only intrinsic factors(e.g.,DOM composition and structure),but also extrinsic ones(e.g.,sunlight and dissolved oxygen)play important roles in interplays between DOM and microbes.展开更多
Pediatric patients are more likely to suffer from brain tumors.Surgical resection is often the optimal treatment.Perioperative management of pediatric brain tumor resection brings great challenges to anesthesiologists...Pediatric patients are more likely to suffer from brain tumors.Surgical resection is often the optimal treatment.Perioperative management of pediatric brain tumor resection brings great challenges to anesthesiologists,especially for fluid therapy.In this case,the infant-patient was only 69-day-old,weighed 6 kg,but she was facing a gaint brain tumor(7.9 cm×8.1 cm×6.7 cm)excision.The infant was at great risks such as hemorrhagic shock,cerebral edema,pulmonary edema,congestive heart failure,coagulation dysfunction,etc.However,we tried to use the parameters obtained by bioreactance-based NICOM^(■)device(Cheetah Medical)to guide the infant’s intraoperative fluid therapy,and successfully avoided these complications and achieved a good prognosis.展开更多
文摘Spores of Bacillus subtilis are being used as probiotics and competitive exclusion agents for animal consumption. Commercial production media often include relatively expensive components of animal origin that are a potential source for the presence of adventious agents, therefore undesirable for use in production scale. In this study a new animal-free component, chemically defined medium, was tested for B. subtilis spore production. Medium composition was optimized with respect to vitamin composition, carbon, nitrogen and calcium concentrations. A fed-batch bioprocess was developed, being the effect on sporulation of the carbon to nitrogen ratio at the end of the exponential growth phase studied. The developed strategy consisted of an initial and a final batch phase and an intermediate fed-batch phase with the addition of a feeding solution containing glucose and calcium and the addition of a feeding solution of ammonium sulphate, using an exponential and a constant feeding profile, respectively. Using the fed-batch strategy, it was possible to achieve a maximum spore production of 3.6 × 1010 spores/mL, corresponding to a 5 folds increase when compared to the preliminary batch experiments.
文摘Recent years have seen the development of a number of mathematical models for the description of the simultaneous transport of microorganisms and bioreactive solutes in porous media. Most models are based on the advection dispersion equation, with terms added to account for interactions with the surfaces of the solid matrix, transformations and microbial activities. Those models based on the advection dispersion equation have all been shown to represent laboratory experimental data adequately although various assumptions have been made concerning the pore scale distribution of bacteria. This paper provides an overview of the recent work on modelling the transport and fate of microorganisms and bioreactive solutes in porous media and examines the different assumptions regarding the pore scale distribution of microorganisms.
基金supported by the National Science and Technology Pillar Program(No.2012BAC04B02)the National Natural Science Fund of China(No.51408243)+3 种基金the Natural Science Foundation of Fujian Province of China(No.2015J01213)the Fundamental Research Funds for Central Universities(No.11QZR07)the Science and Technology Plan Fund of Quanzhou City(No.2014Z218)the Research Funds of Huaqiao University(No.14BS216)
文摘Bioreactive thin-layer capping(BTC)with biozeolite provides a potential remediation design that can sustainably treat N contamination from sediment and overlying water in eutrophic water bodies.Nitrogen(N)reduction using BTC with biozeolite was examined in a field incubation experiment in a eutrophic river in Yangzhou,Jiangsu Province,China.The biozeolite was zeolite with attached bacteria,including two isolated heterotrophic nitrifiers(Bacillus spp.)and two isolated aerobic denitrifiers(Acinetobacter spp.).The results showed that the total nitrogen(TN)reduction efficiency of the overlying water by BTC with biozeolite(with thickness of about 2 mm)reached a maximum(56.69%)at day 34,and simultaneous heterotrophic nitrification and aerobic denitrification occurred in the BTC system until day 34.There was a significant difference in the TN concentrations of the overlying water between biozeolite capping and control(t-test;p〈0.05).The biozeolite had very strong in situ bioregeneration ability.Carbon was the main source of nitrifier growth.However,both dissolved oxygen(DO)and carbon concentrations affected denitrifier growth.In particular,DO concentrations greater than 3 mg/L inhibited denitrifier growth.Therefore,BTC with biozeolite was found to be a feasible technique to reduce N in a eutrophic river.However,it is necessary to further strengthen the adaptability of aerobic denitrifiers through changing domestication methods or conditions.
基金supported by the Special Fund for Science and Technology and the Key Discipline Fund in Environmental Science and Engineering from Guangdong Province of China。
文摘Interactions between chemodiverse dissolved organic matter(DOM)and biodiverse microbes are governed by a myriad of intrinsic and extrinsic factors which are not well understood.Here,we update and bridge the gap of this interdisciplinary theme comprehensively.At an ecosystem level,aquatic ecosystems dominated by algae-sourced DOM(e.g.,eutrophic lake or coastal upwelling areas)harbor more biolabile DOM,such as directly assimilable monomers and readily hydrolysable biopolymers.However,other ecosystems prevailed by DOM supply from soil and vascular plants(e.g.,river or wetland)have more biorefractory DOM,such as low molecular weight(LMW)residue of aliphatic C skeletons and geopolymers.A variety of heterotrophic bacteria,archaea,fungi,phagotrophic protists,and even photoautotrophic phytoplankton shows genomic and/or culturing experimental evidence of being able to process a diverse type of organics.The various biodegradable organics have different chemical structures and chemical bonds such as carbohydrates,amino acids,proteins,lignins,lipids,carboxylic acids,humic acids,hydrocarbons,and nanoplastics.Meanwhile,bio-production of metabolism intermediates and/or biorefractory organics(e.g.,carboxyl-rich alicyclic molecules,CRAM)is observed despite general decay of bulk dissolved organic carbon(DOC)during bioassay experiments.In particular,emerging evidence shows that archaea contribute significantly to biomass in the marine mesopelagic zone and subsurface environments and their abundance often increases with depth in sediments.Furthermore,not only intrinsic factors(e.g.,DOM composition and structure),but also extrinsic ones(e.g.,sunlight and dissolved oxygen)play important roles in interplays between DOM and microbes.
文摘Pediatric patients are more likely to suffer from brain tumors.Surgical resection is often the optimal treatment.Perioperative management of pediatric brain tumor resection brings great challenges to anesthesiologists,especially for fluid therapy.In this case,the infant-patient was only 69-day-old,weighed 6 kg,but she was facing a gaint brain tumor(7.9 cm×8.1 cm×6.7 cm)excision.The infant was at great risks such as hemorrhagic shock,cerebral edema,pulmonary edema,congestive heart failure,coagulation dysfunction,etc.However,we tried to use the parameters obtained by bioreactance-based NICOM^(■)device(Cheetah Medical)to guide the infant’s intraoperative fluid therapy,and successfully avoided these complications and achieved a good prognosis.