BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually....BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.展开更多
In this letter,we comment on a recent case report by Sun et al in the World Journal of Cardiology.The report describes the successful management of a rare complication:The unloading or detachment of a bioresorbable st...In this letter,we comment on a recent case report by Sun et al in the World Journal of Cardiology.The report describes the successful management of a rare complication:The unloading or detachment of a bioresorbable stent(BRS)during percutaneous coronary intervention(PCI)in a male patient.The unloading of BRS was detected via angiography and intravascular ultrasound(IVUS)imaging of the left coronary artery and left anterior descending artery.Although this case is interesting,the authors’report lacked crucial details.Specifically,insufficient information about the type of BRS used,potential causes of BRS unloading,or whether optical coherence tomography(OCT)imaging for coronary arteries was performed before,during,or after PCI.The OCT imaging of coronary arteries before PCI can potentially prevent BRS unloading due to its higher resolution compared to IVUS.In addition,despite detecting myocardial bridging during the PCI,the authors did not provide any details regarding this variation.Here we discuss the various types of BRS,the importance of OCT in PCI,and the clinical relevance of myocardial bridging.展开更多
In contrast to polymer bioresorbable stents(BRS)that exhibited suboptimal performance in clinical trials due to their deficient mechanical properties,metallic BRS with improved mechanical strength have made their way ...In contrast to polymer bioresorbable stents(BRS)that exhibited suboptimal performance in clinical trials due to their deficient mechanical properties,metallic BRS with improved mechanical strength have made their way into the clinic and have demonstrated more promising results.In the roadmap of research and development of metallic BRS,magnesium and iron based biodegradable metal stents had been clinically used,and the zinc based biodegradable metal stents had been trailed in Mini-Pigs.In this mini-review paper,we demonstrate the current technology levels and point out the future R&D direction of metallic BRS.Magnesium based BRS should target for decreasing struct thickness meanwhile balancing with enough supporting strength.Iron based BRS should move towards high efficient absorption,conversion,metabolism,elimination of its degradation products.Zn based BRS should strive to improve mechanical stability,creep resistance and biocompatibility.Future R&D directions of metallic BRS should move towards new materials such as Molybdenum,intelligent stent integrated with degradable biosensors,and new stent with multiple biofunctions,such as NO release.展开更多
The most popular treatment/management modality for coronary artery disease, which is one of the leading causes of death, is percutaneous transluminal coronary intervention (popularly known as “plain old balloon angio...The most popular treatment/management modality for coronary artery disease, which is one of the leading causes of death, is percutaneous transluminal coronary intervention (popularly known as “plain old balloon angioplasty”) followed by implantation of a stent (“stenting”). Stent types have evolved from bare metal stents through first-generation drug-eluting stents to fully bioresorbable stents (FBRSs). Two examples of FBRSs are 1) Mg scaffold with no coating;and 2) Mg alloy scaffold coated with a bioresorbable polymer in which an anti-proliferative drug is embedded. In the case of Mg/Mg alloy FBRSs, one of the reported clinical results is that the resorption time of the stent is too short (in vivo resorption time (and, hence, improving the clinical efficacy) of the current generation of fully-bioresorbable Mg/Mg-alloy stents as well as guide the development of the next generation of these stents.展开更多
Control of premature corrosion of magnesium(Mg)alloy bioresorbable stents(BRS)is frequently achieved by the addition of rare earth elements.However,limited long-term experience with these elements causes concerns for ...Control of premature corrosion of magnesium(Mg)alloy bioresorbable stents(BRS)is frequently achieved by the addition of rare earth elements.However,limited long-term experience with these elements causes concerns for clinical application and alternative methods of corrosion control are sought after.Herein,we report a“built-up”composite film consisting of a bottom layer of MgF2 conversion coating,a sandwich layer of a poly(1,3-trimethylene carbonate)(PTMC)and 3-aminopropyl triethoxysilane(APTES)co-spray coating(PA)and on top a layer of poly(lactic-co-glycolic acid)(PLGA)ultrasonic spray coating to decorate the rare earth element-free Mg-2Zn-1Mn(ZM21)BRS for tailoring both corrosion resistance and biological functions.The developed“built-up”composite film shows synergistic functionalities,allowing the compression and expansion of the coated ZM21 BRS on an angioplasty balloon without cracking or peeling.Of special importance is that the synergistic corrosion control effects of the“built-up”composite film allow for maintaining the mechanical integrity of stents for up to 3 months,where complete biodegradation and no foreign matter residue were observed about half a year after implantation in rabbit iliac arteries.Moreover,the functionalized ZM21 BRS accomplished re-endothelialization within one month.展开更多
基金Supported by Health Commission of Hunan Province,No.202203014389Chinese Medicine Research Project of Hunan Province,No.A2023051the Natural Science Foundation of Hunan Province,No.2024JJ9414.
文摘BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.
文摘In this letter,we comment on a recent case report by Sun et al in the World Journal of Cardiology.The report describes the successful management of a rare complication:The unloading or detachment of a bioresorbable stent(BRS)during percutaneous coronary intervention(PCI)in a male patient.The unloading of BRS was detected via angiography and intravascular ultrasound(IVUS)imaging of the left coronary artery and left anterior descending artery.Although this case is interesting,the authors’report lacked crucial details.Specifically,insufficient information about the type of BRS used,potential causes of BRS unloading,or whether optical coherence tomography(OCT)imaging for coronary arteries was performed before,during,or after PCI.The OCT imaging of coronary arteries before PCI can potentially prevent BRS unloading due to its higher resolution compared to IVUS.In addition,despite detecting myocardial bridging during the PCI,the authors did not provide any details regarding this variation.Here we discuss the various types of BRS,the importance of OCT in PCI,and the clinical relevance of myocardial bridging.
基金supported by Longhua District Project(2022035)National Natural Science Foundation of China(Grant No.51931001 and U22A20121)+1 种基金Fund for International Cooperation and Exchange between NSFC(China)and CNR(Italy)(NSFC-CNR Grant No.52011530392)Fund for International Cooperation and Exchange between NSFC(China)and RFBR(Russia)(NSFC-RFBR Grant No.52111530042).
文摘In contrast to polymer bioresorbable stents(BRS)that exhibited suboptimal performance in clinical trials due to their deficient mechanical properties,metallic BRS with improved mechanical strength have made their way into the clinic and have demonstrated more promising results.In the roadmap of research and development of metallic BRS,magnesium and iron based biodegradable metal stents had been clinically used,and the zinc based biodegradable metal stents had been trailed in Mini-Pigs.In this mini-review paper,we demonstrate the current technology levels and point out the future R&D direction of metallic BRS.Magnesium based BRS should target for decreasing struct thickness meanwhile balancing with enough supporting strength.Iron based BRS should move towards high efficient absorption,conversion,metabolism,elimination of its degradation products.Zn based BRS should strive to improve mechanical stability,creep resistance and biocompatibility.Future R&D directions of metallic BRS should move towards new materials such as Molybdenum,intelligent stent integrated with degradable biosensors,and new stent with multiple biofunctions,such as NO release.
文摘The most popular treatment/management modality for coronary artery disease, which is one of the leading causes of death, is percutaneous transluminal coronary intervention (popularly known as “plain old balloon angioplasty”) followed by implantation of a stent (“stenting”). Stent types have evolved from bare metal stents through first-generation drug-eluting stents to fully bioresorbable stents (FBRSs). Two examples of FBRSs are 1) Mg scaffold with no coating;and 2) Mg alloy scaffold coated with a bioresorbable polymer in which an anti-proliferative drug is embedded. In the case of Mg/Mg alloy FBRSs, one of the reported clinical results is that the resorption time of the stent is too short (in vivo resorption time (and, hence, improving the clinical efficacy) of the current generation of fully-bioresorbable Mg/Mg-alloy stents as well as guide the development of the next generation of these stents.
基金This work was supported by the National Natural Science Foundation of China(Project 32171326,82072072,81330031)the INTERNATIONAL COOPERATION Project by Science and Technology Department of Sichuan Province(2021YslnFH0056)the High-level Talents Research and Development Program of Affiliated Dongguan Hospital(K202102).
文摘Control of premature corrosion of magnesium(Mg)alloy bioresorbable stents(BRS)is frequently achieved by the addition of rare earth elements.However,limited long-term experience with these elements causes concerns for clinical application and alternative methods of corrosion control are sought after.Herein,we report a“built-up”composite film consisting of a bottom layer of MgF2 conversion coating,a sandwich layer of a poly(1,3-trimethylene carbonate)(PTMC)and 3-aminopropyl triethoxysilane(APTES)co-spray coating(PA)and on top a layer of poly(lactic-co-glycolic acid)(PLGA)ultrasonic spray coating to decorate the rare earth element-free Mg-2Zn-1Mn(ZM21)BRS for tailoring both corrosion resistance and biological functions.The developed“built-up”composite film shows synergistic functionalities,allowing the compression and expansion of the coated ZM21 BRS on an angioplasty balloon without cracking or peeling.Of special importance is that the synergistic corrosion control effects of the“built-up”composite film allow for maintaining the mechanical integrity of stents for up to 3 months,where complete biodegradation and no foreign matter residue were observed about half a year after implantation in rabbit iliac arteries.Moreover,the functionalized ZM21 BRS accomplished re-endothelialization within one month.