In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to ...In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to investigate the surface morphology of CNT/Au/TiO2 nanocomposites modified GCE, indicating the formation of the nano-porous structure which could readily facilitate the attachment of GOx on the electrode surface. Cyclic voltammogram (CV) and electrochemical impedance spectrum (EIS) were further utilized to explore relevant electrochemical activity on CNT]Au/TiO2 nanocomposites modified GCE. The observations demonstrated that the immobilized GOx could efficiently execute its bioelectrocatalytic activity for the oxidation of glucose. The biosensor exhibited a wider linearity range from 0.1 mmol L-1 to 8 mmol L^-1 glucose with a detection limit of 0.077 mmol L^- 1.展开更多
基金support from National Key Basic Research Program (No. 2010CB732404)National Natural Science Foundation of China (No. 21175020)+1 种基金Qinglan Project Sci-Tech Innovation Team of Jiangsu ProvinceSuzhou Science & Technology Major Project (No. ZXY2012028)
文摘In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to investigate the surface morphology of CNT/Au/TiO2 nanocomposites modified GCE, indicating the formation of the nano-porous structure which could readily facilitate the attachment of GOx on the electrode surface. Cyclic voltammogram (CV) and electrochemical impedance spectrum (EIS) were further utilized to explore relevant electrochemical activity on CNT]Au/TiO2 nanocomposites modified GCE. The observations demonstrated that the immobilized GOx could efficiently execute its bioelectrocatalytic activity for the oxidation of glucose. The biosensor exhibited a wider linearity range from 0.1 mmol L-1 to 8 mmol L^-1 glucose with a detection limit of 0.077 mmol L^- 1.