期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biosorption mechanism of Cr (Ⅵ) onto cells of Synechococcus sp.
1
作者 申丽 夏金兰 +2 位作者 何环 聂珍媛 邱冠周 《Journal of Central South University of Technology》 2007年第2期157-162,共6页
The biosorption mechanism of Cr (Ⅳ) ions on Synechococcus sp. biosorbent was studied by analyzing the biosorption kinetics as well as speciation change and bond formation during the biosorption process. The kinetic... The biosorption mechanism of Cr (Ⅳ) ions on Synechococcus sp. biosorbent was studied by analyzing the biosorption kinetics as well as speciation change and bond formation during the biosorption process. The kinetics study shows that the adsorption process of Cr (Ⅳ) consists of a very fast stage in the first several minutes, in which more than half of the saturation adsorption is attained, and a slower stage that approximately follows the first order kinetic model, basically Freundlich isotherm models were observed. Comparative studies of FT-LR spectra of K2Cr2O7, free cells of Synechococcus sp., and Cr-bound cells of Synechococcus sp show that the speciation of chromium that binds to the cells ofSynechococcus sp. is Cr (Ⅲ), instead of Cr (Ⅳ), and the carboxylic, alcoholic, amido and amino groups may be involved in the binding of Cr (Ⅲ). Integrative analyses of the surface electric potential, the effect of pH value on adsorption behavior of Cr (Ⅵ), and the results of FT-IR show that the biosorption of Cr (Ⅵ) follows two subsequent steps, biosorption of Cr2O7 ^2- by electrostatical force at the protonated active sites and reduction of Cr2O7^2- to Cr^3+ by the reductive groups on the surface of the biosorbents. 展开更多
关键词 biosorption Synechococcus sp. Cr (Ⅳ) biosorption mechanism biosorption kinetics
下载PDF
Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil 被引量:28
2
作者 Jun Bai Xiuhong Yang +3 位作者 Ruiying Du Yanmei Chen Shizhong Wang Rongliang Qiu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第10期2056-2064,共9页
Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as ... Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb2+removal from the liquid phase. Of the sequestered Pb(II), 8.5% was held by physical entrapment within the cell wall, 43.3% was held by ion-exchange, 9.7% was complexed with cell surface functional groups or precipitated on the cell surface, and 38.5% was intracellularly accumulated.Complexation of Pb2+with carboxyl, hydroxyl, carbonyl, amido, and phosphate groups was demonstrated by Fourier transform infrared spectroscopic analysis. Precipitates of Pb5(PO4)3OH, Pb5(PO4)3Cl and Pb10(PO4)6(OH)2that formed on the cell surface during the biosorption process were identified by X-ray diffraction analysis. Transmission electron microscopy–energy dispersive spectroscopic analysis confirmed the presence of the Pb(II)precipitates and that Pb(II) could be sequestered both extracellularly and intracellularly.Incubation with B. subtilis DBM significantly decreased the amount of the weak-acid-soluble Pb fraction in a heavy-metal-contaminated soil, resulting in a reduction in Pb bioavailability, but increased the amount of its organic-matter-bound fraction by 71%. The ability of B.subtilis DBM to reduce the bioavailability of soil Pb makes it potentially useful for bacteria-assisted phytostabilization of multi-heavy-metal-contaminated soil. 展开更多
关键词 Bacillus subtilis DBM biosorption mechanisms Immobilization Pb speciation Precipitation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部