The problem of a rigid disk acting with normal force on saturated soil was studied using Biot consolidation theory and integral equation method and the Merchant model to describe the saturated soil rheology. Using int...The problem of a rigid disk acting with normal force on saturated soil was studied using Biot consolidation theory and integral equation method and the Merchant model to describe the saturated soil rheology. Using integral transform techniques, general solutions of Biot consolidation functions and the dual integral equations of a rigid disk on saturated soil were established based on the boundary conditions. These equations can be simplified using Laplace-Hankel and Abel transform methods. The numerical solutions of the integral equations, and the corresponding inversion transform were used to obtain the settlement and contact stresses of the rigid disk. Numerical examples showed that the soil settlement is small if only consolidation is considered, so the soil rheology must be taken into account to calculate the soil settlement. Numerical solution of Hankel inverse transform is also given in this paper.展开更多
文摘The problem of a rigid disk acting with normal force on saturated soil was studied using Biot consolidation theory and integral equation method and the Merchant model to describe the saturated soil rheology. Using integral transform techniques, general solutions of Biot consolidation functions and the dual integral equations of a rigid disk on saturated soil were established based on the boundary conditions. These equations can be simplified using Laplace-Hankel and Abel transform methods. The numerical solutions of the integral equations, and the corresponding inversion transform were used to obtain the settlement and contact stresses of the rigid disk. Numerical examples showed that the soil settlement is small if only consolidation is considered, so the soil rheology must be taken into account to calculate the soil settlement. Numerical solution of Hankel inverse transform is also given in this paper.