Theory and evidence indicate that trees and other vegetation influence the atmospheric water-cycle in various ways.These influences are more important, more complex, and more poorly characterised than is widely realis...Theory and evidence indicate that trees and other vegetation influence the atmospheric water-cycle in various ways.These influences are more important, more complex, and more poorly characterised than is widely realised.While there is little doubt that changes in tree cover will impact the water-cycle, the wider consequences remain difficult to predict as the underlying relationships and processes remain poorly characterised. Nonetheless, as forests are vulnerable to human activities, these linked aspects of the water-cycle are also at risk and the potential consequences of large scale forest loss are severe. Here, for non-specialist readers, I review our knowledge of the links between vegetation-cover and climate with a focus on forests and rain(precipitation). I highlight advances, uncertainties and research opportunities. There are significant shortcomings in our understanding of the atmospheric hydrological cycle and of its representation in climate models. A better understanding of the role of vegetation and tree-cover wil reduce some of these shortcomings. I outline and il ustrate various research themes where these advances may be found.These themes include the biology of evaporation, aerosols and atmospheric motion, as well as the processes that determine monsoons and diurnal precipitation cycles. A novel theory—the ‘biotic pump’—suggests that evaporation and condensation can exert a major influence over atmospheric dynamics. This theory explains how high rainfall can be maintained within those continental land-masses that are sufficiently forested. Feedbacks within many of these processes can result in non-linear behaviours and the potential for dramatic changes as a result of forest loss(or gain): for example, switching from a wet to a dry local climate(or visa-versa). Much remains unknown and multiple research disciplines are needed to address this: forest scientists and other biologists have a major role to play.New ideas, methods and data offer opportunities to improve understanding. Expect surprises.展开更多
基金the value of participation in the Australian Research Council projects under grants DP160102107 and LP130100498benefitted from the meeting in Leuven,Belgium in 2015 where his participation was funded by We Forest and the Center for International Forest Researchfrom the meeting in Wageningen,Netherlands,also in 2015,where his participation was funded by Tropenbos
文摘Theory and evidence indicate that trees and other vegetation influence the atmospheric water-cycle in various ways.These influences are more important, more complex, and more poorly characterised than is widely realised.While there is little doubt that changes in tree cover will impact the water-cycle, the wider consequences remain difficult to predict as the underlying relationships and processes remain poorly characterised. Nonetheless, as forests are vulnerable to human activities, these linked aspects of the water-cycle are also at risk and the potential consequences of large scale forest loss are severe. Here, for non-specialist readers, I review our knowledge of the links between vegetation-cover and climate with a focus on forests and rain(precipitation). I highlight advances, uncertainties and research opportunities. There are significant shortcomings in our understanding of the atmospheric hydrological cycle and of its representation in climate models. A better understanding of the role of vegetation and tree-cover wil reduce some of these shortcomings. I outline and il ustrate various research themes where these advances may be found.These themes include the biology of evaporation, aerosols and atmospheric motion, as well as the processes that determine monsoons and diurnal precipitation cycles. A novel theory—the ‘biotic pump’—suggests that evaporation and condensation can exert a major influence over atmospheric dynamics. This theory explains how high rainfall can be maintained within those continental land-masses that are sufficiently forested. Feedbacks within many of these processes can result in non-linear behaviours and the potential for dramatic changes as a result of forest loss(or gain): for example, switching from a wet to a dry local climate(or visa-versa). Much remains unknown and multiple research disciplines are needed to address this: forest scientists and other biologists have a major role to play.New ideas, methods and data offer opportunities to improve understanding. Expect surprises.