The Hot Universe Baryon Surveyor (HUBS) mission will carry a nested X-ray telescope capable of observing an energy range from 0.5 keV to 2 keV to study hot baryon evolution. In this paper, we report the latest progres...The Hot Universe Baryon Surveyor (HUBS) mission will carry a nested X-ray telescope capable of observing an energy range from 0.5 keV to 2 keV to study hot baryon evolution. In this paper, we report the latest progress in the design and construction of nested X-ray telescopes which were designed to use a three-stage conic-approximation type assembly to simplify the manufacturing process. The mirror substrate is made using the thermal glass slumping method, with mirrors characterized by a root-mean-square roughness of 0.3 nm, with expected high reflectivity and good thermal stability. We also discuss methods of telescope construction and conduct a deformation analysis of the manufactured mirror. The in situ measurement system program is developed to guide the telescope assembly process.展开更多
Data security is a very important part of data transmission over insecure channels connected through high-speed networks. Due to COVID-19, the use of data transmission over insecure channels has increased in an expone...Data security is a very important part of data transmission over insecure channels connected through high-speed networks. Due to COVID-19, the use of data transmission over insecure channels has increased in an exponential manner. Hybrid cryptography provides a better solution than a single type of cryptographical technique. In this paper, nested levels of hybrid cryptographical techniques are investigated with the help of Deoxyribonucleic Acid (DNA) and Paillier cryptographical techniques. In the first level, information will be encrypted by DNA and at the second level, the ciphertext of DNA will be encrypted by Paillier cryptography. At the decryption time, firstly Paillier cryptography will be processed, and then DAN cryptography will be processed to get the original text. The proposed algorithm follows the concept of Last Encryption First Decryption (LEFD) at the time of decryption. The computed results are depicted in terms of tables and graphs.展开更多
为了进一步提高分布式阵列的自由度和分辨力,提出一种分布式nested阵列。该阵列将nested阵列作为分布式阵列的子阵。基于Khatri-Rao积,nested子阵可提高整个阵列的自由度。分布式nested阵列以较少的阵元数及硬件成本实现大的孔径和较高...为了进一步提高分布式阵列的自由度和分辨力,提出一种分布式nested阵列。该阵列将nested阵列作为分布式阵列的子阵。基于Khatri-Rao积,nested子阵可提高整个阵列的自由度。分布式nested阵列以较少的阵元数及硬件成本实现大的孔径和较高的分辨力,而且提高了目标波达方向(direction of arrival,DOA)估计的精度。并利用基于Khatri-Rao积的空间平滑酉旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法进行DOA估计。其先对协方差矩阵向量化提高自由度,然后利用空间平滑对新数据协方差矩阵进行秩恢复,最后使用双尺度酉ESPRIT算法得到DOA估计。仿真结果证明所提方法的有效性。展开更多
基金supported by National Key R&D Program of China (2022YFF0709101)China National Space Administration (D050104)National Natural Science Foundation of China (62105244 and U2030111)。
文摘The Hot Universe Baryon Surveyor (HUBS) mission will carry a nested X-ray telescope capable of observing an energy range from 0.5 keV to 2 keV to study hot baryon evolution. In this paper, we report the latest progress in the design and construction of nested X-ray telescopes which were designed to use a three-stage conic-approximation type assembly to simplify the manufacturing process. The mirror substrate is made using the thermal glass slumping method, with mirrors characterized by a root-mean-square roughness of 0.3 nm, with expected high reflectivity and good thermal stability. We also discuss methods of telescope construction and conduct a deformation analysis of the manufactured mirror. The in situ measurement system program is developed to guide the telescope assembly process.
文摘Data security is a very important part of data transmission over insecure channels connected through high-speed networks. Due to COVID-19, the use of data transmission over insecure channels has increased in an exponential manner. Hybrid cryptography provides a better solution than a single type of cryptographical technique. In this paper, nested levels of hybrid cryptographical techniques are investigated with the help of Deoxyribonucleic Acid (DNA) and Paillier cryptographical techniques. In the first level, information will be encrypted by DNA and at the second level, the ciphertext of DNA will be encrypted by Paillier cryptography. At the decryption time, firstly Paillier cryptography will be processed, and then DAN cryptography will be processed to get the original text. The proposed algorithm follows the concept of Last Encryption First Decryption (LEFD) at the time of decryption. The computed results are depicted in terms of tables and graphs.
文摘为了进一步提高分布式阵列的自由度和分辨力,提出一种分布式nested阵列。该阵列将nested阵列作为分布式阵列的子阵。基于Khatri-Rao积,nested子阵可提高整个阵列的自由度。分布式nested阵列以较少的阵元数及硬件成本实现大的孔径和较高的分辨力,而且提高了目标波达方向(direction of arrival,DOA)估计的精度。并利用基于Khatri-Rao积的空间平滑酉旋转不变子空间(estimation of signal parameters via rotational invariance techniques,ESPRIT)算法进行DOA估计。其先对协方差矩阵向量化提高自由度,然后利用空间平滑对新数据协方差矩阵进行秩恢复,最后使用双尺度酉ESPRIT算法得到DOA估计。仿真结果证明所提方法的有效性。