Hierarchically porous architecture of ir on-nitroge n-carb on(Fe-N-C)for oxyge n reducti on reaction(ORR)is highly desired towards efficient mass transfer in the fuel cell device manner.Herein,we reported a binary lig...Hierarchically porous architecture of ir on-nitroge n-carb on(Fe-N-C)for oxyge n reducti on reaction(ORR)is highly desired towards efficient mass transfer in the fuel cell device manner.Herein,we reported a binary ligand strategy to prepare zeolitic imidazolate frameworks(ZIFs)-derived precursors,wherein the addition of secondary ligand endows precursors with the capabilities to transform into porously interweaved encapsulation-nanotubes structured composites after calcination.The optimal catalyst,i.e.,termed as Fe_(6)-M/C-3,exhibits excellent durability with 88.8%current retention after 50,000 seconds in 0.1 M HClO_(4)solution by virtue of nanoparticles-encapsulation features,which is more positive than the benchmark commercial 20 wt%Pt/C catalyst.Moreover,a promising maximum power density of Fe_(6)-M/C-3 as cathode catalyst was also dem on strated in proton exchange membrane fuel cells(PEMFCs)measurements.Therefore,this binary ligand approach to the fabrication of hierarchically porous structures would also have significant implications for various other electrochemical reactions.展开更多
基金supported by the National Key Research and Development Program of China (2019YFA0210300)the NSF of China (21922802)+3 种基金the Beijing Natural Science Foundation (JQ19007)Talent cultivation and open project (OIC- 201801007) of State Key Laboratory of Organic-Inorganic Composites“Double-First-Class” construction projects (XK180301, XK180402)Distinguished Scientist Program at BUCT (buctylkxj02)。
文摘Hierarchically porous architecture of ir on-nitroge n-carb on(Fe-N-C)for oxyge n reducti on reaction(ORR)is highly desired towards efficient mass transfer in the fuel cell device manner.Herein,we reported a binary ligand strategy to prepare zeolitic imidazolate frameworks(ZIFs)-derived precursors,wherein the addition of secondary ligand endows precursors with the capabilities to transform into porously interweaved encapsulation-nanotubes structured composites after calcination.The optimal catalyst,i.e.,termed as Fe_(6)-M/C-3,exhibits excellent durability with 88.8%current retention after 50,000 seconds in 0.1 M HClO_(4)solution by virtue of nanoparticles-encapsulation features,which is more positive than the benchmark commercial 20 wt%Pt/C catalyst.Moreover,a promising maximum power density of Fe_(6)-M/C-3 as cathode catalyst was also dem on strated in proton exchange membrane fuel cells(PEMFCs)measurements.Therefore,this binary ligand approach to the fabrication of hierarchically porous structures would also have significant implications for various other electrochemical reactions.