Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistanc...Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.展开更多
The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blade...The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.展开更多
With dimensional analysis and similarity theory, the model similarity law of aircraft structures trader bird impact load is investigated. Numerical calculations by means of nonlinear dynamic software ANSYS/LS-DYNA are...With dimensional analysis and similarity theory, the model similarity law of aircraft structures trader bird impact load is investigated. Numerical calculations by means of nonlinear dynamic software ANSYS/LS-DYNA are conducted on the finite element models constructed with different scaling factors. The influence of strain rate on the model similarity law is found to be dependent on the strain rate sensitivity of materials and scale factors. Specifically, materials that are not sensitive to strain rate obey the model similarity law in the bird impact process. The conclusions obtained are supposed to provide a theoretical basis for the experimental work of bird impact on aircraft structure.展开更多
On the windward side of an aircraft,the components with higher probability of impact with birds are the wing-type leading edge structures,such as the wing and tail.A study on the damage sensitivity of a wing-type lead...On the windward side of an aircraft,the components with higher probability of impact with birds are the wing-type leading edge structures,such as the wing and tail.A study on the damage sensitivity of a wing-type leading edge structure under bird strikes was presented in this paper.First,a bird strike test was carried out on a wing.The principles of the bird strike test equipment and method were introduced in detail,including the bird strike test system,bird projectile production process and data acquisition system.The dynamic strain measurement results,the high-speed camera videos,and the final deformation and damage morphology observations of the structure were obtained.Based on the coupled Smooth Particle Hydrodynamics(SPH)-Finite Element Method(FEM),the commercial software PAM-CRASH was used to simulate the process of a bird strike with the wing.The good agreement between the finite element simulation results and the experimental results shows that the calculation method and the numerical model presented in this paper were reasonable.On this basis,wing-type leading edge structures can be designed by adding triangular support.The bird strike resistances of an original structure and improved structure were studied by numerical simulation.The calculated results show that the improved wing-type leading edge structure is less damaged than the original structure under bird strike.The improved leading edge structure satisfied the anti-bird strike airworthiness requirements,as the thickness of the triangular support was 1.2 mm,and the weight of the structure was reduced by 0.87 kg compared with the original structure.This indicated that the bird strike resistance of the improved structure is better than that of the original structure,and the improved design of the wing-type leading edge structure presented in this paper is reasonable.展开更多
文摘Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results.
文摘The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided.
文摘With dimensional analysis and similarity theory, the model similarity law of aircraft structures trader bird impact load is investigated. Numerical calculations by means of nonlinear dynamic software ANSYS/LS-DYNA are conducted on the finite element models constructed with different scaling factors. The influence of strain rate on the model similarity law is found to be dependent on the strain rate sensitivity of materials and scale factors. Specifically, materials that are not sensitive to strain rate obey the model similarity law in the bird impact process. The conclusions obtained are supposed to provide a theoretical basis for the experimental work of bird impact on aircraft structure.
基金supported by the Civil Aviation Security Capacity Building Fundthe Civil Aircraft 13th Five Year Pre-Research Project,China (No. MJ-2018-F-18)
文摘On the windward side of an aircraft,the components with higher probability of impact with birds are the wing-type leading edge structures,such as the wing and tail.A study on the damage sensitivity of a wing-type leading edge structure under bird strikes was presented in this paper.First,a bird strike test was carried out on a wing.The principles of the bird strike test equipment and method were introduced in detail,including the bird strike test system,bird projectile production process and data acquisition system.The dynamic strain measurement results,the high-speed camera videos,and the final deformation and damage morphology observations of the structure were obtained.Based on the coupled Smooth Particle Hydrodynamics(SPH)-Finite Element Method(FEM),the commercial software PAM-CRASH was used to simulate the process of a bird strike with the wing.The good agreement between the finite element simulation results and the experimental results shows that the calculation method and the numerical model presented in this paper were reasonable.On this basis,wing-type leading edge structures can be designed by adding triangular support.The bird strike resistances of an original structure and improved structure were studied by numerical simulation.The calculated results show that the improved wing-type leading edge structure is less damaged than the original structure under bird strike.The improved leading edge structure satisfied the anti-bird strike airworthiness requirements,as the thickness of the triangular support was 1.2 mm,and the weight of the structure was reduced by 0.87 kg compared with the original structure.This indicated that the bird strike resistance of the improved structure is better than that of the original structure,and the improved design of the wing-type leading edge structure presented in this paper is reasonable.