Stress-induced birefringence and modal birefringence of single-mode specialty optical fibers with three stress regions are numerically analyzed by the vector finite element method. Stress distribution and stress-induc...Stress-induced birefringence and modal birefringence of single-mode specialty optical fibers with three stress regions are numerically analyzed by the vector finite element method. Stress distribution and stress-induced birefringence distribution of three kinds of optical fibers with different cross structures are presented and compared, and the influence on the stress- induced birefringence by temperature change are analyzed as well. The results show that the fibers with three-stress regions have a lower linear birefringence, which is very important for the fabrication of the circular polaxization-maintalning fiber with high performance drawn from the same fiber preform by using the spinning method.展开更多
A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was ...A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.展开更多
Photoinduced birefringence is investigated in a new amorphous copolymer containing azobenzene groups. The levels of birefringence signal are found to depend an the polarization angle between the pump beam and the prob...Photoinduced birefringence is investigated in a new amorphous copolymer containing azobenzene groups. The levels of birefringence signal are found to depend an the polarization angle between the pump beam and the probe beam, and on the ellipticity of the pump beam. Both the growth and decay processes of the birefringence signal can be described by known biexponential equations. The rate constants and the amplitudes associated with the growth process of the photoinduced birefringence are observed to display a linear dependence with the pump beam intensity. A new dynamic model of the photoinduced birefringence is presented taking into account the contributions of both the bans and cis isomers of azobenzene groups and the local polymer segments. The numerical treatment of this model shows good agreement with the experimental data in the whole writing-erasing processes of the photoinduced birefringence conducted in our polymer samples.展开更多
In this paper,the temperature dependence of birefringence in polarization maintaining photonic crystal fibres(PMPCFs) is investigated theoretically and experimentally.Utilizing the structural parameters of the PM-PC...In this paper,the temperature dependence of birefringence in polarization maintaining photonic crystal fibres(PMPCFs) is investigated theoretically and experimentally.Utilizing the structural parameters of the PM-PCF samples in the experiment,two effects leading to the birefringence variation under different temperatures are analysed,which are the thermal expansion of silica material and the refractive index variation due to the temperature variation.The actual birefringence variation of the PM-PCF is the combination of the two effects,which is in the order of 10-9 K-1 for both fibre samples.Calculation results also show that the influence of refractive index variation is the dominant contribution,which determines the tendency of the fibre birefringence variation with varying temperature.Then,the birefringence beat lengths of the two fibre samples are measured under the temperature,which varies from -40℃ to 80℃.A traditional PANDA-type polarization maintaining fibre(PMF) is also measured in the same way for comparison.The experimental results indicate that the birefringence variation of the PM-PCF due to temperature variation is far smaller than that of the traditional PMF,which agrees with the theoretical analysis.The ultra-low temperature dependence of the birefringence in the PM-PCF has great potential applications in temperature-insensitive fibre interferometers,fibre sensors,and fibre gyroscopes.展开更多
External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams ...External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.展开更多
A type of As2S3 chalcogenide glass mid-infrared dual-core photonic crystal fiber has been proposed. The dualcore photonic crystal fiber (PCF) consists of two asymmetric cores. The high polarization property and the ...A type of As2S3 chalcogenide glass mid-infrared dual-core photonic crystal fiber has been proposed. The dualcore photonic crystal fiber (PCF) consists of two asymmetric cores. The high polarization property and the coupling characteristics have been studied by using the finite dement method and mode coupling theory. Numerical results show that the birefringence at wavelength λ = 10 μm is up to 0.01386 and the coupling length can reach wavelength = 5 μm, 261 μm and 271.44 μm for x-polarized mode and y-polarized mode, respectively. It demonstrates that a 6.786-ram-long fiber can exhibit an extinction ratio of better than -10 dB and a bandwidth of 180 nm.展开更多
This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source...This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.展开更多
Electro-optical composites based on the product of electro-strictive and elasto-optical effects are developed. Layered composites of PbZr1-xTixO3 and polycarbonate are synthesised. Their electro-ptical properties are ...Electro-optical composites based on the product of electro-strictive and elasto-optical effects are developed. Layered composites of PbZr1-xTixO3 and polycarbonate are synthesised. Their electro-ptical properties are studied. The nominal transverse electro-optical coefficient of the composite is observed to be about 3.6 times larger than that of LiNbO3. Experiments and theoretical analyses show that the electro-optical effect of the composite has a strong 'size effect'. With the ratio of thickness/length decreasing or the width of elasto-optical phase increasing, the half-wave electric field intensity increases but the transverse electrc-optical coefficient decreases for the layered composite.展开更多
The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. T...The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.展开更多
We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air hole...We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.展开更多
The formulas which are suitable to birefringent medium with symmetric plane are derived by means of phase retard integration.We have adopted this concept to the axisymmetric problems and deduced some useful formulas f...The formulas which are suitable to birefringent medium with symmetric plane are derived by means of phase retard integration.We have adopted this concept to the axisymmetric problems and deduced some useful formulas for these cases.As a practical application,the strain rate analysis of flow in a diverging or a converging vessel is illustrated at the end of this paper.展开更多
It is demonstrated that the form birefringence related to the so-called nanogratings is quantitatively correlated to the porosity-filling factor of these nanostructures. We reveal that matters surrounding the nanopore...It is demonstrated that the form birefringence related to the so-called nanogratings is quantitatively correlated to the porosity-filling factor of these nanostructures. We reveal that matters surrounding the nanopores exhibit significant refractive index decrease which is likely due to the fictive temperature increase and/or the presence of a significant amount of interstitial O2. The control of the porosity was achieved by adjusting the laser pulse energy and the number of pulses/micron i.e. the overlapping rate. Applications can be numerous in fast material processing by the production of nanoporous matter, and photonics by changing the optical properties.展开更多
Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of thi...Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.展开更多
A type of photonic crystal fiber based on Kagome lattice cladding and slot air holes in a rectangular core is investigated. Full vector finite element method is used to evaluate the modal and propagation properties of...A type of photonic crystal fiber based on Kagome lattice cladding and slot air holes in a rectangular core is investigated. Full vector finite element method is used to evaluate the modal and propagation properties of the designed fiber.High birefringence of 0.089 and low effective material loss of 0.055 cm^-1 are obtained at 1 THz. The y-polarized fundamental mode of the designed fiber shows a flattened and near-zero dispersion of 0±0.45 ps · THz^-1· cm^-1 within a broad frequency range(0.5 THz–1.5 THz). Our results provide the theory basis for applications of the designed fiber in terahertz polarization maintaining systems.展开更多
Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, co...Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.展开更多
The effects of periodically inhomogeneous birefringence on dark-bright vector soliton propagation and interaction are investigated by the numerical method. The birefringence leads to the submergence of the dark solito...The effects of periodically inhomogeneous birefringence on dark-bright vector soliton propagation and interaction are investigated by the numerical method. The birefringence leads to the submergence of the dark soliton and the disintegration of the bright soliton, and enhances the interaction between the neighbouring solitons. The system performance is determined by the bright soliton because the dark soliton has robust features. Finally, the avoidance and the effective control are introduced, and the controlling mechanism is demonstrated.展开更多
We propose a new scheme for the coherent control of birefringent light pulses propagation in a four-level atomic medium. We modify the splitting of a light pulse by controlling the electric and magnetic responses. The...We propose a new scheme for the coherent control of birefringent light pulses propagation in a four-level atomic medium. We modify the splitting of a light pulse by controlling the electric and magnetic responses. The Doppler broad- ening effect is also noted on the propagation of the birefringent pulses. The dispersions of the birefringence beams are oppositely manipulated for delay and advancement of time at a Doppler width of 10Y. A time gap is created between the birefringence beams, which protects from hacking of information. The time gap is then closed to restore the pulse into the original form by a reverse manipulation of the dispersion of the birefringence beams, i.e., introducing another medium whose transfer function is the complex conjugate of that of the original medium. The results are useful for secure communication technology.展开更多
As an important QED effect to detect the vacuum polarization, birefringence in the presence of a strong electric and magnetic field, E0⊥ B0, E0≤ c B0, is considered. The directional dependence of birefringence is ob...As an important QED effect to detect the vacuum polarization, birefringence in the presence of a strong electric and magnetic field, E0⊥ B0, E0≤ c B0, is considered. The directional dependence of birefringence is obtained. In two special cases: E0= 0 and E0= c B0, our results are consistent with the previous ones. The refractive index of the probe wave propagating in the -E0× B0 direction decreases with E0/c B0, while that in the-E0× B0 direction increases with E0/c B0.The physics of the direction dependence of birefringence maybe the E0× B0 drift velocity of the virtual electrons and positrons.展开更多
Birefringence (polarization-related phase-shift), polarization dependent gain (PDG) and mode coupling are three factors that may synchronously influence the transmission of single-wavelength polarized light in opt...Birefringence (polarization-related phase-shift), polarization dependent gain (PDG) and mode coupling are three factors that may synchronously influence the transmission of single-wavelength polarized light in optical fibers. This paper obtains a new Mueller matrix analysis, which can be used under conditions that all these three factors are existing and changing. According to our transmission model, the state of polarization (SOP) changes along an optical mierostructure fiber with co-existence of birefringence-PDG-mode coupling were simulated. The simulated results, which show the phenomena of SOP constringency, are in good agreement with previous theoretical analyses.展开更多
A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result re...A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.展开更多
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)
文摘Stress-induced birefringence and modal birefringence of single-mode specialty optical fibers with three stress regions are numerically analyzed by the vector finite element method. Stress distribution and stress-induced birefringence distribution of three kinds of optical fibers with different cross structures are presented and compared, and the influence on the stress- induced birefringence by temperature change are analyzed as well. The results show that the fibers with three-stress regions have a lower linear birefringence, which is very important for the fabrication of the circular polaxization-maintalning fiber with high performance drawn from the same fiber preform by using the spinning method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475029)
文摘A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.
基金This work was supported by the National Natural Science Foundation of China (No. 19604015) and Guangdong Provincial Natural Science Foundation (No. 980279 and 980346).
文摘Photoinduced birefringence is investigated in a new amorphous copolymer containing azobenzene groups. The levels of birefringence signal are found to depend an the polarization angle between the pump beam and the probe beam, and on the ellipticity of the pump beam. Both the growth and decay processes of the birefringence signal can be described by known biexponential equations. The rate constants and the amplitudes associated with the growth process of the photoinduced birefringence are observed to display a linear dependence with the pump beam intensity. A new dynamic model of the photoinduced birefringence is presented taking into account the contributions of both the bans and cis isomers of azobenzene groups and the local polymer segments. The numerical treatment of this model shows good agreement with the experimental data in the whole writing-erasing processes of the photoinduced birefringence conducted in our polymer samples.
文摘In this paper,the temperature dependence of birefringence in polarization maintaining photonic crystal fibres(PMPCFs) is investigated theoretically and experimentally.Utilizing the structural parameters of the PM-PCF samples in the experiment,two effects leading to the birefringence variation under different temperatures are analysed,which are the thermal expansion of silica material and the refractive index variation due to the temperature variation.The actual birefringence variation of the PM-PCF is the combination of the two effects,which is in the order of 10-9 K-1 for both fibre samples.Calculation results also show that the influence of refractive index variation is the dominant contribution,which determines the tendency of the fibre birefringence variation with varying temperature.Then,the birefringence beat lengths of the two fibre samples are measured under the temperature,which varies from -40℃ to 80℃.A traditional PANDA-type polarization maintaining fibre(PMF) is also measured in the same way for comparison.The experimental results indicate that the birefringence variation of the PM-PCF due to temperature variation is far smaller than that of the traditional PMF,which agrees with the theoretical analysis.The ultra-low temperature dependence of the birefringence in the PM-PCF has great potential applications in temperature-insensitive fibre interferometers,fibre sensors,and fibre gyroscopes.
基金supported by the National Natural Science Foundation of China (Grant No 50575110)
文摘External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874145)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091333110010)+1 种基金the Natural Science Foundation of Hebei Province, China (Grant No. F2009000481)the China Postdoctoral Science Foundation (Grant Nos. 20080440014 and 200902046)
文摘A type of As2S3 chalcogenide glass mid-infrared dual-core photonic crystal fiber has been proposed. The dualcore photonic crystal fiber (PCF) consists of two asymmetric cores. The high polarization property and the coupling characteristics have been studied by using the finite dement method and mode coupling theory. Numerical results show that the birefringence at wavelength λ = 10 μm is up to 0.01386 and the coupling length can reach wavelength = 5 μm, 261 μm and 271.44 μm for x-polarized mode and y-polarized mode, respectively. It demonstrates that a 6.786-ram-long fiber can exhibit an extinction ratio of better than -10 dB and a bandwidth of 180 nm.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10474071, 60637010, 60671036 and 60278001) and Tianjin Applied Fundamental Research Project, China (07JCZDJC05900).
文摘This paper describes a tunable dual-wavelength Ti:sapphire laser system with quasi-continuous-wave and high-power outputs. In the design of the laser, it adopts a frequency-doubled Nd:YAG laser as the pumping source, and the birefringence filter as the tuning element. Tunable dual-wavelength outputs with one wavelength range from 700 nm to 756.5 nm, another from 830 nm to 900mn have been demonstrated. With a pump power of 23 W at 532 nm, a repetition rate of 7 kHz and a pulse width of 47.6 ns, an output power of 5.1 W at 744.8 nm and 860.9 nm with a pulse width of 13.2 ns and a line width of 3 nm has been obtained, it indicates an optical-to-optical conversion efficiency of 22.2%.
基金supported by the National Natural Science Foundation of China (Grant No. 50977046)
文摘Electro-optical composites based on the product of electro-strictive and elasto-optical effects are developed. Layered composites of PbZr1-xTixO3 and polycarbonate are synthesised. Their electro-ptical properties are studied. The nominal transverse electro-optical coefficient of the composite is observed to be about 3.6 times larger than that of LiNbO3. Experiments and theoretical analyses show that the electro-optical effect of the composite has a strong 'size effect'. With the ratio of thickness/length decreasing or the width of elasto-optical phase increasing, the half-wave electric field intensity increases but the transverse electrc-optical coefficient decreases for the layered composite.
基金Project supported the National Key Basic Research and Development Program of China (Grant Nos.2012CB921304 and 2013CB632805)the National Natural Science Foundation of China (Grant Nos.60990313,61306120,and 6106003)the Foundation of Fuzhou University (Grant No.022498)
文摘The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178026)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.
基金The project supported by National Natural Science foundation of China.
文摘The formulas which are suitable to birefringent medium with symmetric plane are derived by means of phase retard integration.We have adopted this concept to the axisymmetric problems and deduced some useful formulas for these cases.As a practical application,the strain rate analysis of flow in a diverging or a converging vessel is illustrated at the end of this paper.
文摘It is demonstrated that the form birefringence related to the so-called nanogratings is quantitatively correlated to the porosity-filling factor of these nanostructures. We reveal that matters surrounding the nanopores exhibit significant refractive index decrease which is likely due to the fictive temperature increase and/or the presence of a significant amount of interstitial O2. The control of the porosity was achieved by adjusting the laser pulse energy and the number of pulses/micron i.e. the overlapping rate. Applications can be numerous in fast material processing by the production of nanoporous matter, and photonics by changing the optical properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378075,61377032,11604327,and 61475152)the Science Foundation of State Key Laboratory of Applied Optics,China
文摘Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604260)the Outstanding Youth Science Fund of Xi’an University of Science and Technology,China(Grant No.2019YQ3-10)
文摘A type of photonic crystal fiber based on Kagome lattice cladding and slot air holes in a rectangular core is investigated. Full vector finite element method is used to evaluate the modal and propagation properties of the designed fiber.High birefringence of 0.089 and low effective material loss of 0.055 cm^-1 are obtained at 1 THz. The y-polarized fundamental mode of the designed fiber shows a flattened and near-zero dispersion of 0±0.45 ps · THz^-1· cm^-1 within a broad frequency range(0.5 THz–1.5 THz). Our results provide the theory basis for applications of the designed fiber in terahertz polarization maintaining systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1631240)the Education Commission Program of BeijingBeijing Natural Science Foundation(Grant No.KZ201510005001)
文摘Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.
基金Supported by the Natural Science Foundation of Hubei Province under Grant No 2004ABAl12, and the Research Programme of the Hong Kong Polytechnic University under Grant No A-PA2Q.
文摘The effects of periodically inhomogeneous birefringence on dark-bright vector soliton propagation and interaction are investigated by the numerical method. The birefringence leads to the submergence of the dark soliton and the disintegration of the bright soliton, and enhances the interaction between the neighbouring solitons. The system performance is determined by the bright soliton because the dark soliton has robust features. Finally, the avoidance and the effective control are introduced, and the controlling mechanism is demonstrated.
文摘We propose a new scheme for the coherent control of birefringent light pulses propagation in a four-level atomic medium. We modify the splitting of a light pulse by controlling the electric and magnetic responses. The Doppler broad- ening effect is also noted on the propagation of the birefringent pulses. The dispersions of the birefringence beams are oppositely manipulated for delay and advancement of time at a Doppler width of 10Y. A time gap is created between the birefringence beams, which protects from hacking of information. The time gap is then closed to restore the pulse into the original form by a reverse manipulation of the dispersion of the birefringence beams, i.e., introducing another medium whose transfer function is the complex conjugate of that of the original medium. The results are useful for secure communication technology.
基金supported by the National Basic Research Program of China(Grant No.2011CB808104)the National Natural Science Foundation of China(Grant No.11105233)
文摘As an important QED effect to detect the vacuum polarization, birefringence in the presence of a strong electric and magnetic field, E0⊥ B0, E0≤ c B0, is considered. The directional dependence of birefringence is obtained. In two special cases: E0= 0 and E0= c B0, our results are consistent with the previous ones. The refractive index of the probe wave propagating in the -E0× B0 direction decreases with E0/c B0, while that in the-E0× B0 direction increases with E0/c B0.The physics of the direction dependence of birefringence maybe the E0× B0 drift velocity of the virtual electrons and positrons.
基金supported by the National Natural Science Foundation of China(Grants Nos.60877057 and 60907027)
文摘Birefringence (polarization-related phase-shift), polarization dependent gain (PDG) and mode coupling are three factors that may synchronously influence the transmission of single-wavelength polarized light in optical fibers. This paper obtains a new Mueller matrix analysis, which can be used under conditions that all these three factors are existing and changing. According to our transmission model, the state of polarization (SOP) changes along an optical mierostructure fiber with co-existence of birefringence-PDG-mode coupling were simulated. The simulated results, which show the phenomena of SOP constringency, are in good agreement with previous theoretical analyses.
基金Project supported by the National Natural Science Foundation of China (Grant No.10874145)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20091333110010)+1 种基金the Natural Science Foundation of Hebei Province of China (Grant No.F2009000481)the Postdoctoral Science Foundation of China (Grant Nos.20080440014 and 200902046)
文摘A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion prop- erty and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.