We present a 9×9 S-matrix and E-matrix.A representation of specialized Birman-Wenzl-Murakami algebra is obtained.Starting from the given braid group representation S-matrix,we obtain the trigonometric solution of...We present a 9×9 S-matrix and E-matrix.A representation of specialized Birman-Wenzl-Murakami algebra is obtained.Starting from the given braid group representation S-matrix,we obtain the trigonometric solution of Yang-Baxter equation.A unitary matrix R(x,φ1,φ2)is generated via the Yang-Baxterization approach.Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x,φ1,φ2).Berry phase of this Yang-Baxter system is investigated in detail.展开更多
In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley-Lieb algebra (TLA ), then a family of 9 × 9-matrix representations of Birman-Wenzl-Murakami algebra (t3 WMA )...In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley-Lieb algebra (TLA ), then a family of 9 × 9-matrix representations of Birman-Wenzl-Murakami algebra (t3 WMA ) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast ninedimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special ease.展开更多
基金Supported by National Natural Science Foundation of China under Grants No.10875026
文摘We present a 9×9 S-matrix and E-matrix.A representation of specialized Birman-Wenzl-Murakami algebra is obtained.Starting from the given braid group representation S-matrix,we obtain the trigonometric solution of Yang-Baxter equation.A unitary matrix R(x,φ1,φ2)is generated via the Yang-Baxterization approach.Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x,φ1,φ2).Berry phase of this Yang-Baxter system is investigated in detail.
基金Supported by National Natural Science Foundation of China under Grant No. 10875026
文摘In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley-Lieb algebra (TLA ), then a family of 9 × 9-matrix representations of Birman-Wenzl-Murakami algebra (t3 WMA ) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast ninedimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special ease.