CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met...CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction.展开更多
The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces c...The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces challenges due to limitations in electrocatalytic activity and durability,especially for nonnoble metal-based catalysts.Here,naturally abundant bismuth-based nanosheets that can effectively drive CO_(2)-to-formate electrocatalytic reduction are prepared using the plasma-activated Bi_(2)Se_(3) followed by a reduction process.Thus-obtained plasma-activated Bi nanosheets(P-BiNS)feature ultrathin structures and high surface areas.Such nanostructures ensure the P-BiNS with outstanding eCO_(2)RR catalytic performance,highlighted by the current density of over 80 mA cm^(-2) and a formate Faradic efficiency of>90%.Furthermore,P-BiNS catalysts demonstrate excellent durability and stability without deactivation following over 50h of operation.The selectivity for formate production is also studied by density functional theory(DFT)calculations,validating the importance and efficacy of the stabilization of intermediates(^(*)OCHO)on the P-BiNS surfaces.This study provides a facile plasma-assisted approach for developing high-performance and low-cost electrocatalysts.展开更多
Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer w...Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts.展开更多
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme...The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.展开更多
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-...A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.展开更多
Recent research has suggested that increased industrial and technological utilization of antimony and bismuth necessitates greater research to determine the soil and water chemistry and the environmental risks associa...Recent research has suggested that increased industrial and technological utilization of antimony and bismuth necessitates greater research to determine the soil and water chemistry and the environmental risks associated with these elements. The near-total soil profile concentrations of antimony and bismuth were determined for key soil series across southeastern Missouri. The antimony concentrations ranged from 0.65 to 0.08 mg kg<sup>−</sup><sup>1</sup>, whereas the bismuth soil profile concentrations ranged from 0.92 to 0.03 mg kg<sup>−</sup><sup>1</sup>. Most pedons showed antimony concentrations ranging from 20 to 30 mg kg<sup>−</sup><sup>1</sup>, whereas bismuth concentrations were commonly 10 to 20 mg kg<sup>−</sup><sup>1</sup>. For soils having argillic horizons, antimony and bismuth concentrations were greater for the illuvial horizons than the eluvial horizons, whereas Entisols, Inceptisols, and one Vertisol showed rather uniform antimony and bismuth concentrations, features paralleling the soil texture distribution. Both antimony and bismuth showed significant correlations with iron.展开更多
Recently,the bismuth-rich strategy via increasing the bismuth content has been becoming one of the most appealing approaches to improve the photocatalytic performance of bismuth oxyhalides.However,insights into the me...Recently,the bismuth-rich strategy via increasing the bismuth content has been becoming one of the most appealing approaches to improve the photocatalytic performance of bismuth oxyhalides.However,insights into the mechanism behind the encouraging experiments are missing.Herein,we report the results of the theory-led comprehensive picture of bismuth-rich strategy in bismuth oxyhalide photocatalysts,selecting Bi_(5)O_(7)X(X=F,Cl,Br,I)as a prototype.First-principle calculations revealed that the strategy enables good n-type conductivity,large intrinsic internal electric field,high photoreduction ability and outstanding harvest of visible light,and particularly ranked the intrinsic activity of this family:Bi_(5)O_(7)F>Bi_(5)O_(7)I>Bi_(5)O_(7)Br>Bi_(5)O_(7)Cl.Designed experiments confirmed the theoretical predictions,and together,these results are expected to aid future development of advanced photocatalysts.展开更多
Photocatalysis is an effective way to solve the problems of environmental pollution and energy shortage.Numerous photocatalysts have been developed and various strategies have been proposed to improve the photocatalyt...Photocatalysis is an effective way to solve the problems of environmental pollution and energy shortage.Numerous photocatalysts have been developed and various strategies have been proposed to improve the photocatalytic performance.Among them,Bi-based photocatalysts have become one of the most popular research topics due to their suitable band gaps,unique layered structures,and physicochemical properties.In this review,Bi-based photocatalysts(BiOX,BiVO_(4),Bi_(2)S_(3),Bi_(2)MoO_(6),and other Bi-based photocatalysts)have been summarized in the field of photocatalysis,including their applications of the removal of organic pollutants,hydrogen production,oxygen production etc.The preparation strategies on how to improve the photocatalytic performance and the possible photocatalytic mechanism are also summarized,which could supply new insights for fabricating high-efficient Bi-based photocatalysts.Finally,we summarize the current challenges and make a reasonable outlook on the future development direction of Bi-based photocatalysts.展开更多
Objective: To explore the effect of Bismuth Subgallate/Borneol (Suile<sup>TM</sup> BSB) healing dressing combined with autologous platelet-rich gel (APG) in the treatment of diabetic foot ulcer (DFU). Meth...Objective: To explore the effect of Bismuth Subgallate/Borneol (Suile<sup>TM</sup> BSB) healing dressing combined with autologous platelet-rich gel (APG) in the treatment of diabetic foot ulcer (DFU). Methods: A total of 120 patients with DFU hospitalized in the Changsha Central Hospital from August 2020 to September 2021 were selected and randomly divided into an experimental group (BSB + APG, n = 60) and a control group (BSB, n = 60) according to random number table method. The total therapeutic effect, healing time, hospital stay, level indexes of various inflammatory factors before and after treatment and ulcer area were observed in the two groups. Results: The total effect of the control group was worse than that of the experimental group, and the data between the two groups were significant (P 0.05);after treatment, the levels of inflammatory factors including WBC, CRP, IL-6 and TNF-α in the control group were higher than those in the experimental group, and there was significant difference between the two groups (P 0.05);after 14 days of treatment, the ulcer area in the control group was larger than that in the experimental group, and the data between the two groups were significant (P Conclusion: BSB combined with APG can achieve better therapeutic effect, reduce the inflammatory reaction of patients, and promote wound healing in the treatment of patients with diabetic foot ulcer.展开更多
Antibiotic resistance is one of the major issues in the medical field and a potential threat to human health.However,newly emerging antimicrobial compounds failed to combat antimicrobial resistance developed by bacter...Antibiotic resistance is one of the major issues in the medical field and a potential threat to human health.However,newly emerging antimicrobial compounds failed to combat antimicrobial resistance developed by bacterial pathogens.Recently,a bismuth-based complex has been developed to eradicate antimicrobial-resistant microorganism infections.The complex is known as organobismuth(III)phosphinate,which is said to be a potential broad-spectrum antimicrobial agent.This complex has been incorporated into the nanocellulose suspension to fabricate a biomedical composite for various applications.The composite can be fabricated by two methods namely vacuum filtration and spray coating.In this paper,the surface and topography of the composite are investigated and discussed in terms of SEM micrographs and their antimicrobial potential.This review focuses on the organo-bismuth nanocellulose composite and its biomedical application in the future.展开更多
Since low overpotential for the anodic ethanol oxidation reaction(EOR)can favor the higher output voltage and power of direct ethanol fuel cells(DEFCs),it is critical to design new EOR catalysts with efficient ethanol...Since low overpotential for the anodic ethanol oxidation reaction(EOR)can favor the higher output voltage and power of direct ethanol fuel cells(DEFCs),it is critical to design new EOR catalysts with efficient ethanol-to-CO_(2)activity at low applied potentials.Thereby,carbon-supported Ir-Bi_(2)O_(3)(Ir-Bi_(2)O_(3)/C)catalysts with highly dispersive bismuth oxide on the iridium surface are designed and prepared,which can merit splitting the ethanol C–C bond and promoting the oxidation of C1 intermediates at the bifunctional interfaces.The as-obtained Ir-Bi2O3/C catalysts show superior EOR mass activity of up to ca.2250 m A mgIr-1.Moreover,they exhibit the record lowest onset oxidation potentials(0.17–0.22 V vs.RHE)and the peak potential(ca.0.58 V vs.RHE),being 130–300 m V lower than the previous landmark noble metallic catalysts.Furthermore,an apparent C1 pathway faraday efficiency(FEC1)of 28%±5.9%at 0.5 V vs.RHE can be obtained at Ir-Bi_(2)O_(3)/C.This work might provide new insights into the new anodic EOR catalysts for increasing the power of DEFCs.展开更多
Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or to...Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.展开更多
Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or to...Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.展开更多
In order to solve the problems of environment pollution and high cost in traditional process of bismuth subcarbonate preparation, a new process using ball-milling transformation method from NH4HCO3 and Bi2O3 was propo...In order to solve the problems of environment pollution and high cost in traditional process of bismuth subcarbonate preparation, a new process using ball-milling transformation method from NH4HCO3 and Bi2O3 was proposed. Additionally, the kinetics of bismuth subcarbonate preparation was studied. Effects of reaction temperature, particle size of bismuth oxide, solid-to-liquid ratio and concentrations of ammonium bicarbonate on the conversion rate of bismuth oxide were studied. The results indicate that the conversion rate of bismuth oxide significantly increased under the conditions of higher temperature, smaller particle size, higher concentration of ammonium bicarbonate and smaller solid-to-liquid ratio. The XRD and ICP-AES analyses show that the purity of product is high. The reaction kinetics with activation energy of 9.783 kJ/mol was analyzed by shrinking core model, and the whole transformation process is controlled by solid product layer diffusion. A semi-empirical kinetics equation was obtained to describe the conversion process.展开更多
Photocatalysis has received much attention owing to current energy and environmental crises. The use of an appropriate photocatalyst is important to a photocatalytic process. The development of photocatalysts that abs...Photocatalysis has received much attention owing to current energy and environmental crises. The use of an appropriate photocatalyst is important to a photocatalytic process. The development of photocatalysts that absorb light over a wide range of wavelengths and efficiently separate charge carriers remains a challenge and hot research topic. With strong visible-light-absorption ability, bismuth-containing photocatalysts are of great interest to scientists. However, measures have to be taken to enhance the light absorption efficiency and to lessen the problem of the recombination of charge carriers. Known approaches are the formation of heterojunctions through(1) loading of a noble metal,(2) semiconductor combination,(3) metal and nonmetal doping,(4) carbon-based material modification, and(5) Bi metal loading. The present review summarizes recent advances in this respect. Finally, the future development and potential applications of bismuth-containing photocatalysts with heterojunctions are briefly discussed.展开更多
α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 ...α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22072110 and 21872107)the Key Research and Development Projects of Hubei Province,China(2022BAA083)。
文摘CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction.
基金partial support from the Jiujiang Research Institute at Xiamen University.
文摘The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces challenges due to limitations in electrocatalytic activity and durability,especially for nonnoble metal-based catalysts.Here,naturally abundant bismuth-based nanosheets that can effectively drive CO_(2)-to-formate electrocatalytic reduction are prepared using the plasma-activated Bi_(2)Se_(3) followed by a reduction process.Thus-obtained plasma-activated Bi nanosheets(P-BiNS)feature ultrathin structures and high surface areas.Such nanostructures ensure the P-BiNS with outstanding eCO_(2)RR catalytic performance,highlighted by the current density of over 80 mA cm^(-2) and a formate Faradic efficiency of>90%.Furthermore,P-BiNS catalysts demonstrate excellent durability and stability without deactivation following over 50h of operation.The selectivity for formate production is also studied by density functional theory(DFT)calculations,validating the importance and efficacy of the stabilization of intermediates(^(*)OCHO)on the P-BiNS surfaces.This study provides a facile plasma-assisted approach for developing high-performance and low-cost electrocatalysts.
基金financial support from the Zhejiang Provincial Natural Science Foundation of China(LQ22B060007)the National Natural Science Foundation of China(22206042)+2 种基金the Scientific Research Start-up of Hangzhou Normal University(2021GDL014)the Hebei Natural Science Foundation(E2021203047)the Hebei Provincial Foundation for Returness(C20200369)。
文摘Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts.
基金Funded by the National Natural Science Foundation of China(No.52103285)the 111 National Project(No.B20002)。
文摘The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.
基金supported by the National Natural Science Foundation of China (Grant No.12072331)the Science Challenge Project (Grant No.TZ2018001)+2 种基金the Japan Society for the Promotion of Science (Grant Nos.17H04820 and 21H01677)the Foundation of the United Laboratory of High-Pressure Physics and Earthquake Scienceperformed under the approval of the Photon Factory Program Advisory Committee (Proposal Nos.2016S2-006 and 2020G680)。
文摘A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process.
文摘Recent research has suggested that increased industrial and technological utilization of antimony and bismuth necessitates greater research to determine the soil and water chemistry and the environmental risks associated with these elements. The near-total soil profile concentrations of antimony and bismuth were determined for key soil series across southeastern Missouri. The antimony concentrations ranged from 0.65 to 0.08 mg kg<sup>−</sup><sup>1</sup>, whereas the bismuth soil profile concentrations ranged from 0.92 to 0.03 mg kg<sup>−</sup><sup>1</sup>. Most pedons showed antimony concentrations ranging from 20 to 30 mg kg<sup>−</sup><sup>1</sup>, whereas bismuth concentrations were commonly 10 to 20 mg kg<sup>−</sup><sup>1</sup>. For soils having argillic horizons, antimony and bismuth concentrations were greater for the illuvial horizons than the eluvial horizons, whereas Entisols, Inceptisols, and one Vertisol showed rather uniform antimony and bismuth concentrations, features paralleling the soil texture distribution. Both antimony and bismuth showed significant correlations with iron.
基金support from the National Science Fund for Distinguished Young Scholars(Grant No.52125103)the National Natural Science Foundation of China(Grant Nos.52071041,12074048,and 12147102)+1 种基金the Project for Fundamental and Frontier Research in Chongqing(cstc2020jcyj-msxmX0777 and cstc2020jcyj-msxmX0796)the Fundamental Research Funds for the Central Universities(106112016CDJZR308808).
文摘Recently,the bismuth-rich strategy via increasing the bismuth content has been becoming one of the most appealing approaches to improve the photocatalytic performance of bismuth oxyhalides.However,insights into the mechanism behind the encouraging experiments are missing.Herein,we report the results of the theory-led comprehensive picture of bismuth-rich strategy in bismuth oxyhalide photocatalysts,selecting Bi_(5)O_(7)X(X=F,Cl,Br,I)as a prototype.First-principle calculations revealed that the strategy enables good n-type conductivity,large intrinsic internal electric field,high photoreduction ability and outstanding harvest of visible light,and particularly ranked the intrinsic activity of this family:Bi_(5)O_(7)F>Bi_(5)O_(7)I>Bi_(5)O_(7)Br>Bi_(5)O_(7)Cl.Designed experiments confirmed the theoretical predictions,and together,these results are expected to aid future development of advanced photocatalysts.
基金We gratefully acknowledge the support of this research by the National Natural Science Foundation of China(52172206,21871078)the Heilongjiang Province Natural Science Foundation of China(JQ2019B001)+4 种基金the Shandong Province Natural Science Foundation(ZR2021MB016)the Heilongjiang Provincial Institutions of Higher Learning Basic Research Funds Basic Research Projects(2021-KYYWF-0007)the Heilongjiang Postdoctoral Startup Fund(LBH-Q14135)the Heilongjiang University Science Fund for Distinguished Young Scholars(JCL201802)the Development plan of Youth Innovation Team in Colleges and Universities of Shandong Province.
文摘Photocatalysis is an effective way to solve the problems of environmental pollution and energy shortage.Numerous photocatalysts have been developed and various strategies have been proposed to improve the photocatalytic performance.Among them,Bi-based photocatalysts have become one of the most popular research topics due to their suitable band gaps,unique layered structures,and physicochemical properties.In this review,Bi-based photocatalysts(BiOX,BiVO_(4),Bi_(2)S_(3),Bi_(2)MoO_(6),and other Bi-based photocatalysts)have been summarized in the field of photocatalysis,including their applications of the removal of organic pollutants,hydrogen production,oxygen production etc.The preparation strategies on how to improve the photocatalytic performance and the possible photocatalytic mechanism are also summarized,which could supply new insights for fabricating high-efficient Bi-based photocatalysts.Finally,we summarize the current challenges and make a reasonable outlook on the future development direction of Bi-based photocatalysts.
文摘Objective: To explore the effect of Bismuth Subgallate/Borneol (Suile<sup>TM</sup> BSB) healing dressing combined with autologous platelet-rich gel (APG) in the treatment of diabetic foot ulcer (DFU). Methods: A total of 120 patients with DFU hospitalized in the Changsha Central Hospital from August 2020 to September 2021 were selected and randomly divided into an experimental group (BSB + APG, n = 60) and a control group (BSB, n = 60) according to random number table method. The total therapeutic effect, healing time, hospital stay, level indexes of various inflammatory factors before and after treatment and ulcer area were observed in the two groups. Results: The total effect of the control group was worse than that of the experimental group, and the data between the two groups were significant (P 0.05);after treatment, the levels of inflammatory factors including WBC, CRP, IL-6 and TNF-α in the control group were higher than those in the experimental group, and there was significant difference between the two groups (P 0.05);after 14 days of treatment, the ulcer area in the control group was larger than that in the experimental group, and the data between the two groups were significant (P Conclusion: BSB combined with APG can achieve better therapeutic effect, reduce the inflammatory reaction of patients, and promote wound healing in the treatment of patients with diabetic foot ulcer.
文摘Antibiotic resistance is one of the major issues in the medical field and a potential threat to human health.However,newly emerging antimicrobial compounds failed to combat antimicrobial resistance developed by bacterial pathogens.Recently,a bismuth-based complex has been developed to eradicate antimicrobial-resistant microorganism infections.The complex is known as organobismuth(III)phosphinate,which is said to be a potential broad-spectrum antimicrobial agent.This complex has been incorporated into the nanocellulose suspension to fabricate a biomedical composite for various applications.The composite can be fabricated by two methods namely vacuum filtration and spray coating.In this paper,the surface and topography of the composite are investigated and discussed in terms of SEM micrographs and their antimicrobial potential.This review focuses on the organo-bismuth nanocellulose composite and its biomedical application in the future.
基金supported by the National Natural Science Foundation of China(NSFC,22172121)the Natural Science Foundation of Sichuan Province(NSFSC,2023NSFSC1076)+1 种基金the Young Talent Project of State Ethnic Affairs Commissionthe Fundamental Research Funds for the Central Universities(ZYN2023106),Southwest Minzu University。
文摘Since low overpotential for the anodic ethanol oxidation reaction(EOR)can favor the higher output voltage and power of direct ethanol fuel cells(DEFCs),it is critical to design new EOR catalysts with efficient ethanol-to-CO_(2)activity at low applied potentials.Thereby,carbon-supported Ir-Bi_(2)O_(3)(Ir-Bi_(2)O_(3)/C)catalysts with highly dispersive bismuth oxide on the iridium surface are designed and prepared,which can merit splitting the ethanol C–C bond and promoting the oxidation of C1 intermediates at the bifunctional interfaces.The as-obtained Ir-Bi2O3/C catalysts show superior EOR mass activity of up to ca.2250 m A mgIr-1.Moreover,they exhibit the record lowest onset oxidation potentials(0.17–0.22 V vs.RHE)and the peak potential(ca.0.58 V vs.RHE),being 130–300 m V lower than the previous landmark noble metallic catalysts.Furthermore,an apparent C1 pathway faraday efficiency(FEC1)of 28%±5.9%at 0.5 V vs.RHE can be obtained at Ir-Bi_(2)O_(3)/C.This work might provide new insights into the new anodic EOR catalysts for increasing the power of DEFCs.
文摘Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.
文摘Substituted imidazoles are of interest because of their useful biological activities. While several methods have been developed for the synthesis of such compounds, some of the reported methods utilize corrosive or toxic catalysts. We report a bismuth (III) triflate catalyzed multicomponent synthesis of 2,4,5-trisubstituted imidazoles. Bismuth (III) compounds are attractive from a green chemistry perspective because they are remarkably non-toxic and non-corrosive. Multicomponent syntheses save time and generate less waste.
基金Project(50774099)supported by the National Natural Science Foundation of China
文摘In order to solve the problems of environment pollution and high cost in traditional process of bismuth subcarbonate preparation, a new process using ball-milling transformation method from NH4HCO3 and Bi2O3 was proposed. Additionally, the kinetics of bismuth subcarbonate preparation was studied. Effects of reaction temperature, particle size of bismuth oxide, solid-to-liquid ratio and concentrations of ammonium bicarbonate on the conversion rate of bismuth oxide were studied. The results indicate that the conversion rate of bismuth oxide significantly increased under the conditions of higher temperature, smaller particle size, higher concentration of ammonium bicarbonate and smaller solid-to-liquid ratio. The XRD and ICP-AES analyses show that the purity of product is high. The reaction kinetics with activation energy of 9.783 kJ/mol was analyzed by shrinking core model, and the whole transformation process is controlled by solid product layer diffusion. A semi-empirical kinetics equation was obtained to describe the conversion process.
基金supported by the National Natural Science Foundation of China(2140105421476065)+1 种基金the China Postdoctoral Science Foundation(2014M562098)the Fundamental Research Funds for the Central Universities~~
文摘Photocatalysis has received much attention owing to current energy and environmental crises. The use of an appropriate photocatalyst is important to a photocatalytic process. The development of photocatalysts that absorb light over a wide range of wavelengths and efficiently separate charge carriers remains a challenge and hot research topic. With strong visible-light-absorption ability, bismuth-containing photocatalysts are of great interest to scientists. However, measures have to be taken to enhance the light absorption efficiency and to lessen the problem of the recombination of charge carriers. Known approaches are the formation of heterojunctions through(1) loading of a noble metal,(2) semiconductor combination,(3) metal and nonmetal doping,(4) carbon-based material modification, and(5) Bi metal loading. The present review summarizes recent advances in this respect. Finally, the future development and potential applications of bismuth-containing photocatalysts with heterojunctions are briefly discussed.
基金Project (2006BAB02B05-04- 01/02) supported by the National Key Technologies R&D Program of China
文摘α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.