Objective:Natural killer(NK)cells have gained considerable attention due to their potential in treating"cold tumors,"and are therefore considered as one of the new strategies for curing cancer,by using world...Objective:Natural killer(NK)cells have gained considerable attention due to their potential in treating"cold tumors,"and are therefore considered as one of the new strategies for curing cancer,by using worldwide development of their new possibilities and interventions with NK cell-related therapeutic products.Methods:We constructed a trispecific killer engager(TriKE)consisting of anti-CD16,IL-15,and anti-CD19.This TriKE was designed to attract CD19^(+)tumor cells to CD16^(+)NK cells,whereas IL-15 sustained the proliferation,development,and survival of NK cells.Results:Treatment with 161519 TriKE in the presence of CD19^(+)targets upregulated expression of CD69,CD107 a,TRAIL,IFN-γ,and TNF-α in NK cells,and significantly improved the proliferation and cytotoxicity of NK cells.NK cells"armed"with 161519 TriKE showed stronger cytolysis against CD19+targets compared with that of"unarmed"NK cells.A preclinical model of B-cell lymphoma in human peripheral blood mononuclear cell-reconstituted xenograft mice showed significant inhibition of tumor growth and prolonged overall survival after treatment with 161519 TriKE,when compared with that in control mice or mice treated with 1619 BiKE.Combined use of IL-2 was a more effective treatment with 1619 BiKE,when compared with that using 161519 TriKE.Conclusions:The newly generated 161519 TriKE enhanced the proliferation,activation,cytokine secretion,and cytotoxicity of NK cells in the presence of CD19+tumor cells.The 161519 TriKE aided inhibition of tumor growth and prolonged the overall survival of murine xenografts,and could be used to treat CD19-positive cancers.展开更多
The efficacy and specificity of conventional monoclonal antibody(mAb)drugs in the clinic require further improvement.Currently,the development and application of novel antibody formats for improving cancer immunothera...The efficacy and specificity of conventional monoclonal antibody(mAb)drugs in the clinic require further improvement.Currently,the development and application of novel antibody formats for improving cancer immunotherapy have attracted much attention.Variable region-retaining antibody fragments,such as antigen-binding fragment(Fab),single-chain variable fragment(scFv),bispecific antibody,and bi/trispecific cell engagers,are engineered with humanization,multivalent antibody construction,affinity optimization and antibody masking for targeting tumor cells and killer cells to improve antibody-based therapy potency,efficacy and specificity.In this review,we summarize the application of antibody variable region engineering and discuss the future direction of antibody engineering for improving cancer therapies.展开更多
基金supported by grants from the National Key R&D Program of China(Grant No.2019YFA0508502)the CAMS Innovation Fund for Medical Sciences(Grant No.2019-I2M-5-073)the National Natural Science Foundation of China(Grant Nos.81788101,81972679,and 81821001)。
文摘Objective:Natural killer(NK)cells have gained considerable attention due to their potential in treating"cold tumors,"and are therefore considered as one of the new strategies for curing cancer,by using worldwide development of their new possibilities and interventions with NK cell-related therapeutic products.Methods:We constructed a trispecific killer engager(TriKE)consisting of anti-CD16,IL-15,and anti-CD19.This TriKE was designed to attract CD19^(+)tumor cells to CD16^(+)NK cells,whereas IL-15 sustained the proliferation,development,and survival of NK cells.Results:Treatment with 161519 TriKE in the presence of CD19^(+)targets upregulated expression of CD69,CD107 a,TRAIL,IFN-γ,and TNF-α in NK cells,and significantly improved the proliferation and cytotoxicity of NK cells.NK cells"armed"with 161519 TriKE showed stronger cytolysis against CD19+targets compared with that of"unarmed"NK cells.A preclinical model of B-cell lymphoma in human peripheral blood mononuclear cell-reconstituted xenograft mice showed significant inhibition of tumor growth and prolonged overall survival after treatment with 161519 TriKE,when compared with that in control mice or mice treated with 1619 BiKE.Combined use of IL-2 was a more effective treatment with 1619 BiKE,when compared with that using 161519 TriKE.Conclusions:The newly generated 161519 TriKE enhanced the proliferation,activation,cytokine secretion,and cytotoxicity of NK cells in the presence of CD19+tumor cells.The 161519 TriKE aided inhibition of tumor growth and prolonged the overall survival of murine xenografts,and could be used to treat CD19-positive cancers.
基金CAMS Innovation Fund for Medical Sciences,Grant/Award Number:2021-I2M-1-017。
文摘The efficacy and specificity of conventional monoclonal antibody(mAb)drugs in the clinic require further improvement.Currently,the development and application of novel antibody formats for improving cancer immunotherapy have attracted much attention.Variable region-retaining antibody fragments,such as antigen-binding fragment(Fab),single-chain variable fragment(scFv),bispecific antibody,and bi/trispecific cell engagers,are engineered with humanization,multivalent antibody construction,affinity optimization and antibody masking for targeting tumor cells and killer cells to improve antibody-based therapy potency,efficacy and specificity.In this review,we summarize the application of antibody variable region engineering and discuss the future direction of antibody engineering for improving cancer therapies.