A self-developed ASP agent was used to separate bitumen from Indonesia's oil sands by its comprehensive effect and the separation condition was well investigated. The bitumen extraction conditions for industrial a...A self-developed ASP agent was used to separate bitumen from Indonesia's oil sands by its comprehensive effect and the separation condition was well investigated. The bitumen extraction conditions for industrial application were recommended to cover a mixing temperature of 80℃, a mixing time of 40 min, a mass ratio of ASP agent to oil sands of 4:10, and a floating time of 10 min. Under the above conditions, the bitumen recovery was about 86% and the residual bitumen content in tailings was about 6%. The relationship between the residual bitumen content and the particle size of tailings was studied in order to find the way to reducing the residual bitumen content in tailings. The results showed that the residual bitumen content in tailings decreased with a decreasing tailings particle size. After being milled for 30 min with a mortar, the tailings was reprocessed via extraction by means of the ASP agent, and the residual bitumen content in tailings decreased from 5.47% to 1.25%, which could comply with the disposal requirements.展开更多
Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil s...Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil sands were compared.Furthermore,the Hansen solubility combination parameter(HSCP)and Teas triangle were used to explore rules in the separation of oil sands bitumen via solvent extraction.Finally,the saturates,aromatics,resins,and asphaltenes(SARA)fractions of the bitumen from Indonesian oil sands were analyzed.The results showed that the Indonesian oil sands were oil-wet with a bitumen content of 24.93%.The solvent extraction for bitumen could be accurately and conveniently selected based on the solubility parameter.When the HSPs of the extraction solvent were around 18–19 and the HSCPs were closer to a certain range(δ_(d)=17.5–18.0,δ_(p)=1–3.5,and δ_(h)=2–6),the extraction effect of bitumen from Indonesian oil sands improved,and the primary component affecting the extraction rate of bitumen were asphaltenes.展开更多
Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major componen...Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM. It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is “unliberated”, and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU). Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.展开更多
Gold-tube pyrolysis experiments were performed on two Athabasca oil sand bitumens at 300℃to 525℃with 2℃/h rate and 25℃step under 50 MPa.Pyrolysis temperature of 425℃is critical for weight loss of bulk bitumen and...Gold-tube pyrolysis experiments were performed on two Athabasca oil sand bitumens at 300℃to 525℃with 2℃/h rate and 25℃step under 50 MPa.Pyrolysis temperature of 425℃is critical for weight loss of bulk bitumen and hydrocarbon generation and destruction.Polar compounds are the main source of saturated and aromatic hydrocarbon,gas and coke fractions.Molecular compositions in pyrolyzates vary systematically with increasing pyrolysis temperatures.High molecular weight n-alkanes(C26^+) are gradually destructed during pyrolysis due to thermal cracking.Moderate molecular weight n-alkanes(C21-C25)show the highest thermal stability in designed pyrolysis temperatures.The loss of low molecular weight n-alkanes(C20^-)might be caused by volatilization during pyrolysis,which may alter commonly used molecular parameters such as∑n-C20^-/∑n-C21^+,Pr/n-C17 and Ph/n-C18.Aromatic hydrocarbons were generated from 300 to 425℃,then condensation and dealkylation have been initiated at 425℃as evidenced by decreased summed alkylnaphthalenes to alkylphenanthrenes ratios and increased unsubstituted aromatics to substituted homologs ratios in higher temperatures.The occurrence of anthracene and benz[a]anthracene in pyrolysates indicates pyrogenic origin,while fluoranthene shows unexpected behaviors during pyrolysis.Ratios derived from them are not always reliable for pyrogenic source input diagnosis in environmental samples.展开更多
The reaction behavior of oil sand from Inner Mongolia(China) were studied in a fluidizedbed pyrolysis process,and a comparative study was conducted on the properties of the liquid products obtained through fluidized...The reaction behavior of oil sand from Inner Mongolia(China) were studied in a fluidizedbed pyrolysis process,and a comparative study was conducted on the properties of the liquid products obtained through fluidized-bed pyrolysis of oil sand and the native bitumen obtained by solvent extraction.The results indicated that the fluidized-bed pyrolysis,a feasible carbon rejection process,can be used to upgrade oil sand.The reaction temperature and time were found to be the key operating parameters affecting the product distribution and yields in fluidized-bed pyrolysis of oil sand.The optimal temperature was 490℃ and the most suitable reaction time was 5 min.Under these operation conditions,the maximum yield of liquid product was 80wt%.In addition,the pyrolysis kinetics of oil sand at different heating rates of 5,10,20 and 30℃/min was investigated using a thermogravimetric analyzer(TGA).展开更多
Vast amounts of tailings are produced daily in bitumen extraction from the Athabasca oil sands. The coarse sand from the tailings stream is used to build dykes around the containment basin. The run off slurry arrives ...Vast amounts of tailings are produced daily in bitumen extraction from the Athabasca oil sands. The coarse sand from the tailings stream is used to build dykes around the containment basin. The run off slurry arrives at the water’s edge in the tailings pond at a solids concentration of about 3%~8% by mass. Settling of the solids takes place "relatively fast", over several days, creating a "free water zone" that contains little solids. When the fine mineral solids concentration has reached about 15% by mass, the suspension develops non Newtonian properties. After 2~3 years, the suspension concentration reaches a value of about 30% by mass at which the settling rate becomes extremely slow. Methods to handle the already created tailings ponds and new approaches to eliminate the creation of new ones will be discussed both from the industrial and fundamental prospective.展开更多
The caustic alkali-free water extraction agents were studied for treating the oil sands excavated from Inner Mongolia, China. Several kinds of chemical reagents were evaluated, among which sodium carbonate(SC), sodium...The caustic alkali-free water extraction agents were studied for treating the oil sands excavated from Inner Mongolia, China. Several kinds of chemical reagents were evaluated, among which sodium carbonate(SC), sodium dodecyl benzene sulfonate(SD) and sodium chloride were confirmed as composite solutes. Their proportion was optimized by an orthogonal test. The optimum proportion of the composite agent covered 0.03% of SD, 0.50% of sodium chloride, 3.00% of SC, with the rest composed of water. The optimal operating condition was also confirmed. The oil sands were extracted at the following optimized conditions: a treating time of 15 min, a temperature of 80 ℃ and an extraction agent/feed ratio of 1:1, with the bitumen yield reaching more than 96%. The extraction agent after separation from the bitumen product can be recycled for reuse to carve out a good environmentally friendly route.展开更多
Considerable reserves of oil sands are located in northernAlberta. Exploitation of these reserves has been instrumental in the development of theAlbertaeconomy. Mining and processing techniques, including “in situ” ...Considerable reserves of oil sands are located in northernAlberta. Exploitation of these reserves has been instrumental in the development of theAlbertaeconomy. Mining and processing techniques, including “in situ” processing and surface mining/aqueous treatment, are presented. Oil assisted flotation and solvent extraction are discussed as possible future processing alternatives. Subsequent froth treatment and refining methods are described. The rapid expansion of bitumen processing in theFort McMurrayarea has drastically affectedAlberta’s economic, political and social policy. Corresponding strain has been placed on the regional ecosystem. A comparison between wind and bitumen as sources of energy is offered.展开更多
用YSFL系列油砂水洗分离剂进行新疆沥青砂的水洗分离,综合考察水洗剂质量分数、加热温度、加热时间、剂砂比等因素对油砂分离的影响,比较YSFL系列水洗分离剂配方对油砂沥青的水洗分离效果.实验结果表明,在适宜水洗分离剂质量分数(5%)、...用YSFL系列油砂水洗分离剂进行新疆沥青砂的水洗分离,综合考察水洗剂质量分数、加热温度、加热时间、剂砂比等因素对油砂分离的影响,比较YSFL系列水洗分离剂配方对油砂沥青的水洗分离效果.实验结果表明,在适宜水洗分离剂质量分数(5%)、适宜的加热温度(90℃)、适当的加热时间(20 m in)和剂砂质量比(2∶1)的条件下,YSFL-3油砂分离剂可以将油砂沥青中的沥青与石英砂实现较好的分离,油砂出油率可达94%以上.分离后的水性试剂可循环利用,对环境无污染.展开更多
文摘A self-developed ASP agent was used to separate bitumen from Indonesia's oil sands by its comprehensive effect and the separation condition was well investigated. The bitumen extraction conditions for industrial application were recommended to cover a mixing temperature of 80℃, a mixing time of 40 min, a mass ratio of ASP agent to oil sands of 4:10, and a floating time of 10 min. Under the above conditions, the bitumen recovery was about 86% and the residual bitumen content in tailings was about 6%. The relationship between the residual bitumen content and the particle size of tailings was studied in order to find the way to reducing the residual bitumen content in tailings. The results showed that the residual bitumen content in tailings decreased with a decreasing tailings particle size. After being milled for 30 min with a mortar, the tailings was reprocessed via extraction by means of the ASP agent, and the residual bitumen content in tailings decreased from 5.47% to 1.25%, which could comply with the disposal requirements.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant number:BK20140260)Joint Project of Industry-University-Research of Jiangsu Province(Grant number:BY2018158,BY2021590)State Key Laboratory of Heavy Oil Processing.
文摘Indonesian oil sands were systematically separated to investigate their basic composition.The extraction effects of the solvents with different Hilderbrand solubility parameters(HSPs)on the bitumen of Indonesian oil sands were compared.Furthermore,the Hansen solubility combination parameter(HSCP)and Teas triangle were used to explore rules in the separation of oil sands bitumen via solvent extraction.Finally,the saturates,aromatics,resins,and asphaltenes(SARA)fractions of the bitumen from Indonesian oil sands were analyzed.The results showed that the Indonesian oil sands were oil-wet with a bitumen content of 24.93%.The solvent extraction for bitumen could be accurately and conveniently selected based on the solubility parameter.When the HSPs of the extraction solvent were around 18–19 and the HSCPs were closer to a certain range(δ_(d)=17.5–18.0,δ_(p)=1–3.5,and δ_(h)=2–6),the extraction effect of bitumen from Indonesian oil sands improved,and the primary component affecting the extraction rate of bitumen were asphaltenes.
文摘Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM. It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is “unliberated”, and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU). Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.
基金supported by National Natural Science Foundation of China(Grant Number 41573035,41873049)the Mitacs project at University of Calgary。
文摘Gold-tube pyrolysis experiments were performed on two Athabasca oil sand bitumens at 300℃to 525℃with 2℃/h rate and 25℃step under 50 MPa.Pyrolysis temperature of 425℃is critical for weight loss of bulk bitumen and hydrocarbon generation and destruction.Polar compounds are the main source of saturated and aromatic hydrocarbon,gas and coke fractions.Molecular compositions in pyrolyzates vary systematically with increasing pyrolysis temperatures.High molecular weight n-alkanes(C26^+) are gradually destructed during pyrolysis due to thermal cracking.Moderate molecular weight n-alkanes(C21-C25)show the highest thermal stability in designed pyrolysis temperatures.The loss of low molecular weight n-alkanes(C20^-)might be caused by volatilization during pyrolysis,which may alter commonly used molecular parameters such as∑n-C20^-/∑n-C21^+,Pr/n-C17 and Ph/n-C18.Aromatic hydrocarbons were generated from 300 to 425℃,then condensation and dealkylation have been initiated at 425℃as evidenced by decreased summed alkylnaphthalenes to alkylphenanthrenes ratios and increased unsubstituted aromatics to substituted homologs ratios in higher temperatures.The occurrence of anthracene and benz[a]anthracene in pyrolysates indicates pyrogenic origin,while fluoranthene shows unexpected behaviors during pyrolysis.Ratios derived from them are not always reliable for pyrogenic source input diagnosis in environmental samples.
基金the financial support provided by the National Science Foundation of China (21176252)the China National Petroleum Science Research Program (2011B-2404-01)
文摘The reaction behavior of oil sand from Inner Mongolia(China) were studied in a fluidizedbed pyrolysis process,and a comparative study was conducted on the properties of the liquid products obtained through fluidized-bed pyrolysis of oil sand and the native bitumen obtained by solvent extraction.The results indicated that the fluidized-bed pyrolysis,a feasible carbon rejection process,can be used to upgrade oil sand.The reaction temperature and time were found to be the key operating parameters affecting the product distribution and yields in fluidized-bed pyrolysis of oil sand.The optimal temperature was 490℃ and the most suitable reaction time was 5 min.Under these operation conditions,the maximum yield of liquid product was 80wt%.In addition,the pyrolysis kinetics of oil sand at different heating rates of 5,10,20 and 30℃/min was investigated using a thermogravimetric analyzer(TGA).
文摘Vast amounts of tailings are produced daily in bitumen extraction from the Athabasca oil sands. The coarse sand from the tailings stream is used to build dykes around the containment basin. The run off slurry arrives at the water’s edge in the tailings pond at a solids concentration of about 3%~8% by mass. Settling of the solids takes place "relatively fast", over several days, creating a "free water zone" that contains little solids. When the fine mineral solids concentration has reached about 15% by mass, the suspension develops non Newtonian properties. After 2~3 years, the suspension concentration reaches a value of about 30% by mass at which the settling rate becomes extremely slow. Methods to handle the already created tailings ponds and new approaches to eliminate the creation of new ones will be discussed both from the industrial and fundamental prospective.
文摘The caustic alkali-free water extraction agents were studied for treating the oil sands excavated from Inner Mongolia, China. Several kinds of chemical reagents were evaluated, among which sodium carbonate(SC), sodium dodecyl benzene sulfonate(SD) and sodium chloride were confirmed as composite solutes. Their proportion was optimized by an orthogonal test. The optimum proportion of the composite agent covered 0.03% of SD, 0.50% of sodium chloride, 3.00% of SC, with the rest composed of water. The optimal operating condition was also confirmed. The oil sands were extracted at the following optimized conditions: a treating time of 15 min, a temperature of 80 ℃ and an extraction agent/feed ratio of 1:1, with the bitumen yield reaching more than 96%. The extraction agent after separation from the bitumen product can be recycled for reuse to carve out a good environmentally friendly route.
文摘Considerable reserves of oil sands are located in northernAlberta. Exploitation of these reserves has been instrumental in the development of theAlbertaeconomy. Mining and processing techniques, including “in situ” processing and surface mining/aqueous treatment, are presented. Oil assisted flotation and solvent extraction are discussed as possible future processing alternatives. Subsequent froth treatment and refining methods are described. The rapid expansion of bitumen processing in theFort McMurrayarea has drastically affectedAlberta’s economic, political and social policy. Corresponding strain has been placed on the regional ecosystem. A comparison between wind and bitumen as sources of energy is offered.
文摘用YSFL系列油砂水洗分离剂进行新疆沥青砂的水洗分离,综合考察水洗剂质量分数、加热温度、加热时间、剂砂比等因素对油砂分离的影响,比较YSFL系列水洗分离剂配方对油砂沥青的水洗分离效果.实验结果表明,在适宜水洗分离剂质量分数(5%)、适宜的加热温度(90℃)、适当的加热时间(20 m in)和剂砂质量比(2∶1)的条件下,YSFL-3油砂分离剂可以将油砂沥青中的沥青与石英砂实现较好的分离,油砂出油率可达94%以上.分离后的水性试剂可循环利用,对环境无污染.