The purpose of this paper is to propose a new model of asymmetry for square contingency tables with ordered categories. The new model may be appropriate for a square contingency table if it is reasonable to assume an ...The purpose of this paper is to propose a new model of asymmetry for square contingency tables with ordered categories. The new model may be appropriate for a square contingency table if it is reasonable to assume an underlying bivariate t-distribution with different marginal variances having any degrees of freedom. As the degrees of freedom becomes larger, the proposed model approaches the extended linear diagonals-parameter symmetry model, which may be appropriate for a square table if it is reasonable to assume an underlying bivariate normal distribution. The simulation study based on bivariate t-distribution is given. An example is given.展开更多
Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference ...Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.展开更多
In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar re...In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.展开更多
Both the Newton interpolating polynomials and the Thiele-type interpolating continued fractions based on inverse differences are used to construct a kind of bivariate blending rational interpolants and an error estima...Both the Newton interpolating polynomials and the Thiele-type interpolating continued fractions based on inverse differences are used to construct a kind of bivariate blending rational interpolants and an error estimation is given.展开更多
Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes,...Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes, the maximum likelihood estimators are established, and the approximate confidence intervals are also constructed via the observed Fisher information matrix.Moreover, Bayes estimates and highest probability density credible intervals are presented and the importance sampling technique is used to compute corresponding results. Finally, the numerical analysis is proposed for illustration.展开更多
An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degra...An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.展开更多
A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar de...A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.展开更多
Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability ...Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.展开更多
By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are prese...By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are presented.展开更多
In this paper, the dimension of the spaces of bivariate spline with degree less that 2r and smoothness order r on the Morgan-Scott triangulation is considered. The concept of the instability degree in the dimension of...In this paper, the dimension of the spaces of bivariate spline with degree less that 2r and smoothness order r on the Morgan-Scott triangulation is considered. The concept of the instability degree in the dimension of spaces of bivariate spline is presented. The results in the paper make us conjecture the instability degree in the dimension of spaces of bivariate spline is infinity.展开更多
We propose a procedure to obtain accurate confidence intervals for the stress-strength reliability R = P (X > Y) when (X, Y) is a bivariate normal distribution with unknown means and covariance matrix. Our method i...We propose a procedure to obtain accurate confidence intervals for the stress-strength reliability R = P (X > Y) when (X, Y) is a bivariate normal distribution with unknown means and covariance matrix. Our method is more accurate than standard methods as it possesses a third-order distributional accuracy. Simulations studies are provided to show the performance of the proposed method relative to existing ones in terms of coverage probability and average length. An empirical example is given to illustrate its usefulness in practice.展开更多
Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degrad...Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degradation testing(ADT)model is used for analyzing the bivariate dependent degradation process of FOG.The time-varying copulas are employed to consider the dynamic dependency structure between two marginal degradation processes as the Wiener process and the inverse Gaussian process.The statistical inference is implemented by utilizing an inference function for the margins(IFM)approach.It is demonstrated that the proposed method is powerful in modeling the joint distribution with various margins.展开更多
In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios ...In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios were considered in this study.The first case is when the fluid drags the plate,the second is when the plate drags the fluid and the third is when the plate floats on the fluid at the same velocity.The denser microorganisms create the bioconvection as they swim to the top following an oxygen gradient within the fluid.The velocity ratio parameter plays a key role in the dynamics for this flow.Varying the parameter below and above a critical value alters the dynamics of the flow.The Hartmann number,buoyancy ratio and radiation parameter have a reverse effect on the secondary velocity for values of the velocity ratio above and below the critical value.The Hall parameter on the other hand has a reverse effect on the primary velocity for values of velocity ratio above and below the critical value.The bioconvection Rayleigh number decreases the primary velocity.The secondary velocity increases with increasing values of the bioconvection Rayleigh number and is positive for velocity ratio values below 0.5.For values of the velocity ratio parameter above 0.5,the secondary velocity is negative for small values of bioconvection Rayleigh number and as the values increase,the flow is reversed and becomes positive.展开更多
Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-p...Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-point on the software reliability growth process influences on accuracy for software reliability assessment based on a software reliability growth model (SRGM). We propose an SRGM with the effect of the change-point based on a bivariate SRGM, in which the software reliability growth process is assumed to depend on the testing-time and testing-effort factors simultaneously, for accurate software reliability assessment. And we discuss an optimal software release problem for deriving optimal testing-effort expenditures based on our model. Further, we show numerical examples of software reliability assessment based on our bivariate SRGM and estimation of optimal testing-effort expenditures by using actual data.展开更多
This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simpl...This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simple off-diagonal bivariate quadratic Hermite-Padé form always defines a bivariate quadratic function and that this function is analytic in a neighbourhood of the origin.Numerical examples compare the obtained results with the approximation power of diagonal Chisholm approximant and Taylor polynomial approximant.展开更多
Recovery of under-sampled seismic data is a critical problem,in oil and gas exploration,therefore recovery algorithms with iterative shrinkage based on compressed sensing have been recently proposed. However most of t...Recovery of under-sampled seismic data is a critical problem,in oil and gas exploration,therefore recovery algorithms with iterative shrinkage based on compressed sensing have been recently proposed. However most of these algorithms usually adopt a soft shrinkage function,which assumes that all of the sparse coefficients are independent of each other in curvelet or other domains,little attention has so far been devoted to the inter-dependencies of coefficients. In this paper,the dependencies of parent-child curvelet coefficients of seismic data are exploited by Bayesian estimation,moreover the new seismic data recovery algorithm via curvelet-based bivariate shrinkage function is proposed. First the respective parent-child curvelet coefficients joint distribution models of fully-sampled seismic data and noise signal caused by missing traces are established,then the bivariate shrinkage function according to the Bayesian maximum posterior probability estimation is obtained,finally the Landweber iterative shrinkage algorithm is used in the recovery process.When compared with existing recovery algorithms,it is proved that the proposed algorithm can obtain higher PSNR performance,and maintains the texture details better in events of seismic data展开更多
Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based o...Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based on the Chebyshev nodes of second kind and ±1, and those of bivariate Shepard operators, have the property of partial preservation of global smoothness, with respect to various bivariate moduli of continuity.展开更多
文摘The purpose of this paper is to propose a new model of asymmetry for square contingency tables with ordered categories. The new model may be appropriate for a square contingency table if it is reasonable to assume an underlying bivariate t-distribution with different marginal variances having any degrees of freedom. As the degrees of freedom becomes larger, the proposed model approaches the extended linear diagonals-parameter symmetry model, which may be appropriate for a square table if it is reasonable to assume an underlying bivariate normal distribution. The simulation study based on bivariate t-distribution is given. An example is given.
文摘Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.
基金supported by the Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),UTS under grant numbers 321740.2232335,323930,and 321740.2232357
文摘In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.
文摘Both the Newton interpolating polynomials and the Thiele-type interpolating continued fractions based on inverse differences are used to construct a kind of bivariate blending rational interpolants and an error estimation is given.
基金supported by the National Natural Science Foundation of China(11501433)the Fundamental Research Funds for the Central Universities(JB180711)
文摘Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes, the maximum likelihood estimators are established, and the approximate confidence intervals are also constructed via the observed Fisher information matrix.Moreover, Bayes estimates and highest probability density credible intervals are presented and the importance sampling technique is used to compute corresponding results. Finally, the numerical analysis is proposed for illustration.
基金Project(60904002)supported by the National Natural Science Foundation of China
文摘An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.
文摘A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.
基金Project(71371182) supported by the National Natural Science Foundation of China
文摘Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)the Natural Science Foundation of Jiangsu Higher Education Institution of China(Grant No.14KJD140001)
文摘By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are presented.
基金Project Supported by the national Natural Science Foundation of China(No.19871010,No.69973010).
文摘In this paper, the dimension of the spaces of bivariate spline with degree less that 2r and smoothness order r on the Morgan-Scott triangulation is considered. The concept of the instability degree in the dimension of spaces of bivariate spline is presented. The results in the paper make us conjecture the instability degree in the dimension of spaces of bivariate spline is infinity.
文摘We propose a procedure to obtain accurate confidence intervals for the stress-strength reliability R = P (X > Y) when (X, Y) is a bivariate normal distribution with unknown means and covariance matrix. Our method is more accurate than standard methods as it possesses a third-order distributional accuracy. Simulations studies are provided to show the performance of the proposed method relative to existing ones in terms of coverage probability and average length. An empirical example is given to illustrate its usefulness in practice.
基金supported by the National Key R&D Program of China(2018YFB0104504).
文摘Fiber optical gyroscope(FOG)is a highly reliable navigation element,and the degradation trajectories of its two accuracy indexes are monotonic and non-monotonic respectively.In this paper,a flexible accelerated degradation testing(ADT)model is used for analyzing the bivariate dependent degradation process of FOG.The time-varying copulas are employed to consider the dynamic dependency structure between two marginal degradation processes as the Wiener process and the inverse Gaussian process.The statistical inference is implemented by utilizing an inference function for the margins(IFM)approach.It is demonstrated that the proposed method is powerful in modeling the joint distribution with various margins.
文摘In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios were considered in this study.The first case is when the fluid drags the plate,the second is when the plate drags the fluid and the third is when the plate floats on the fluid at the same velocity.The denser microorganisms create the bioconvection as they swim to the top following an oxygen gradient within the fluid.The velocity ratio parameter plays a key role in the dynamics for this flow.Varying the parameter below and above a critical value alters the dynamics of the flow.The Hartmann number,buoyancy ratio and radiation parameter have a reverse effect on the secondary velocity for values of the velocity ratio above and below the critical value.The Hall parameter on the other hand has a reverse effect on the primary velocity for values of velocity ratio above and below the critical value.The bioconvection Rayleigh number decreases the primary velocity.The secondary velocity increases with increasing values of the bioconvection Rayleigh number and is positive for velocity ratio values below 0.5.For values of the velocity ratio parameter above 0.5,the secondary velocity is negative for small values of bioconvection Rayleigh number and as the values increase,the flow is reversed and becomes positive.
文摘Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-point on the software reliability growth process influences on accuracy for software reliability assessment based on a software reliability growth model (SRGM). We propose an SRGM with the effect of the change-point based on a bivariate SRGM, in which the software reliability growth process is assumed to depend on the testing-time and testing-effort factors simultaneously, for accurate software reliability assessment. And we discuss an optimal software release problem for deriving optimal testing-effort expenditures based on our model. Further, we show numerical examples of software reliability assessment based on our bivariate SRGM and estimation of optimal testing-effort expenditures by using actual data.
基金Supported by National Natural Science Foundation of China( 699730 1 0,1 0 2 71 0 2 2 )
文摘This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simple off-diagonal bivariate quadratic Hermite-Padé form always defines a bivariate quadratic function and that this function is analytic in a neighbourhood of the origin.Numerical examples compare the obtained results with the approximation power of diagonal Chisholm approximant and Taylor polynomial approximant.
基金Sponsored by the National Natural Science Foundation of China(Grant o.61374127)
文摘Recovery of under-sampled seismic data is a critical problem,in oil and gas exploration,therefore recovery algorithms with iterative shrinkage based on compressed sensing have been recently proposed. However most of these algorithms usually adopt a soft shrinkage function,which assumes that all of the sparse coefficients are independent of each other in curvelet or other domains,little attention has so far been devoted to the inter-dependencies of coefficients. In this paper,the dependencies of parent-child curvelet coefficients of seismic data are exploited by Bayesian estimation,moreover the new seismic data recovery algorithm via curvelet-based bivariate shrinkage function is proposed. First the respective parent-child curvelet coefficients joint distribution models of fully-sampled seismic data and noise signal caused by missing traces are established,then the bivariate shrinkage function according to the Bayesian maximum posterior probability estimation is obtained,finally the Landweber iterative shrinkage algorithm is used in the recovery process.When compared with existing recovery algorithms,it is proved that the proposed algorithm can obtain higher PSNR performance,and maintains the texture details better in events of seismic data
文摘Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based on the Chebyshev nodes of second kind and ±1, and those of bivariate Shepard operators, have the property of partial preservation of global smoothness, with respect to various bivariate moduli of continuity.