It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order ...It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities.展开更多
We improve the brick-wall model to take only the contribution of a thin film near the event horizon into account.This improvement not only gives us a satisfactory result,but also avoids some drawbacks in the original ...We improve the brick-wall model to take only the contribution of a thin film near the event horizon into account.This improvement not only gives us a satisfactory result,but also avoids some drawbacks in the original brick-wall method such as the little mass approximation,neglecting logarithm term,and taking the term L3 as the contribution of the vacuum surrounding a black hole.It is found that there is an intrinsic relation between the event horizon and the entropy.The event horizon is the characteristic of a black hole,so the entropy calculating of a black hole is also naturally related to its horizon.展开更多
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole en...Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.展开更多
Using the thin film brick-wall model and WKB approximation, the entropy of the Dirac field in the non-stationary and slowly changing Reissner-Nordstrom (R-N) black hole is calculated. The result shows that the entropy...Using the thin film brick-wall model and WKB approximation, the entropy of the Dirac field in the non-stationary and slowly changing Reissner-Nordstrom (R-N) black hole is calculated. The result shows that the entropy of the R-N black hole is still proportional to its surface area if we choose proper cut-off.展开更多
In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arisi...In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arising from the higher curvature terms of the gravitational action. For the scalar field, the renormalized Newton constant and two renormalized coupling constants in the toroidal black hole are the same as those in the Reissner-Nordstrom black hole except for other one.展开更多
By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein-Hawking entropy and its correction term on the background ...By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein-Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein-Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates.展开更多
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient ...Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty prlnciple and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.展开更多
We discuss the entropy of the Garfinkle-Horowitz-Strominger dilaton black hole by using the thin film brick-wall model, and the entropy obtained is proportional to the horizon area of the black hole confirming the Bek...We discuss the entropy of the Garfinkle-Horowitz-Strominger dilaton black hole by using the thin film brick-wall model, and the entropy obtained is proportional to the horizon area of the black hole confirming the Bekenstein-Hawking's area-entropy formula. Then, by comparing with the original brick-wall method, we find that the result obtained by the thin film method is more reasonable avoiding some drawbacks, such as little mass approximation, neglecting logarithm term, and taking the term L^3 as a contribution of the vacuum surrounding the black hole, and the physical meaning of the entropy is more clearer.展开更多
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entro...The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Fhrther it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.展开更多
Using the membrane model based on the brick-wall model, we calculate the free energy and entropy of dilatonic black hole due to arbitrary spin fields. The result shows that the entropy of scalar field and the entropy ...Using the membrane model based on the brick-wall model, we calculate the free energy and entropy of dilatonic black hole due to arbitrary spin fields. The result shows that the entropy of scalar field and the entropy of Fermionic field have similar formulas. There is only a numerical coefficient between them.展开更多
By using the new equation of state density derived from the generalized uncertainty relation, the number of the quantum states near event horizon is obtained, with which then the information entropy of static spherica...By using the new equation of state density derived from the generalized uncertainty relation, the number of the quantum states near event horizon is obtained, with which then the information entropy of static spherically symmetric black holes has been discussed. It is found that the divergent integral of quantum states near the event horizon can be naturally avoided if using the new equation of state density without introducing the ultraviolet cut-off. The information entropy of black holes can be obtained precisely by the residue theorem, which is shown to be proportional to the horizon area. The information entropy of black holes obtained agrees with the Bechenstein-Hawking entropy when the suitable cutoff factor is adopted.展开更多
By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically- symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spa...By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically- symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant. The spectra for non-charged and charged black holes are calculated, respectively. All these results are consistent with the original Bekenstein spectra.展开更多
In the light of Ф-mapping method and the relationship between entropy and the Euler characteristic, the intrinsic topological structure of entropy of Kerr black holes is studied. From the Ganss-Bonnet-Chem theorem, i...In the light of Ф-mapping method and the relationship between entropy and the Euler characteristic, the intrinsic topological structure of entropy of Kerr black holes is studied. From the Ganss-Bonnet-Chem theorem, it is shown that the entropy of Kerr black hole is determined by singularities of the Killing vector field of spacetime. These singularities naturally carry topological numbers, Hopf indices and Brouwer degrees, which can also be viewed as topological quantization of entropy of Kerr black holes. Specific results S = A/4 for non-extreme Kerr black holes and S = 0 for extreme ones are calculated independently by using the above-mentioned methods.展开更多
This paper studies the finite statistical-mechanical entropy of the Schwarzschild anti-de Sitter (ADS) spacetime arising from quantum massless scalar field by using the 'brick wall' approach in the Painlev; and Le...This paper studies the finite statistical-mechanical entropy of the Schwarzschild anti-de Sitter (ADS) spacetime arising from quantum massless scalar field by using the 'brick wall' approach in the Painlev; and Lemaaitre coordinates. At first glance, it seems that the results would be different from that in the Schwarzschild-like coordinate since both the Painlev; and the Lemaitre spacetimes do not possess the event horizon obviously. However, this paper proves that the entropies in these coordinates are exactly equivalent to that in the Schwarzschild-like coordinate.展开更多
It has been shown that non-rotating black holes Recently study showed that thermal fluctuations would give in three or four dimensions possess a canonical entropy. rise to logarithmic corrections to Bekenstein Hawking...It has been shown that non-rotating black holes Recently study showed that thermal fluctuations would give in three or four dimensions possess a canonical entropy. rise to logarithmic corrections to Bekenstein Hawking entropy in area with a model-dependent uncertain coefficient. In this paper, the thermal fluctuations on Bekenstein-Hawking entropy in three-dimensional AdS black holes, Schwarzschild-de Sitter space and Kerr-de Sitter (KdS) spacetime with J = 0 will be considered based on a uniformly spaced area spectrum approach. Our conclusion shows that there is the same correction form in all cases we considered.展开更多
There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term & given by the logarithm of black hole area with a model-dependen...There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term & given by the logarithm of black hole area with a model-dependent coefficient. Recently the research for quantum gravity implies the emergence of a modification of the energy-momentum dispersion relation (MDR), which plays an important role in the modified black hole thermodynamics. In this paper, we investigate the quantum corrections to Bekenstein-Hawking entropy in four-dimensional Sehwarzschild black hole and Reissner-Nordstrom black hole respectively based on MDR.展开更多
In this paper, we discuss leading-order corrections to the entropy of Kerr black hole due to thermal fluctuations in the finite cavity. Then temperature is constant, the solution of the black hole is obtained within a...In this paper, we discuss leading-order corrections to the entropy of Kerr black hole due to thermal fluctuations in the finite cavity. Then temperature is constant, the solution of the black hole is obtained within a cavity, that is, the solution of the spacetime after considering the radiation of the black hole. Therefore, we derive that the location of the black hole horizon and specific heat are the functions of temperature and the radius of the cavity.Corrections to entropy also are related to the radius of the cavity. Through calculation, we obtain conditions of taking the value of the cavity's radius. We provide a new way for studying the corrections of complicated spacetimes.展开更多
In the light of topological current and the relationship between the entropy and the Euler characteristic, the topological aspects of entropy and phase transition of Kerr black holes are studied. From Gauss-Bonnet-Che...In the light of topological current and the relationship between the entropy and the Euler characteristic, the topological aspects of entropy and phase transition of Kerr black holes are studied. From Gauss-Bonnet-Chern theorem, it is shown that the entropy of Kerr black holes is determined by the singularities of the Killing vector field of spacetime. By calculating the Hopf indices and Brouwer degrees of the Killing vector field at the singularities, the entropy S = A/4 for nonextreme Kerr black holes and S = 0 for extreme ones are obtained, respectively. It is also discussed that, with the change of the ratio of mass to angular momentum for unit mass, the Euler characteristic and the entropy of Kerr black holes will change discontinuously when the singularities on Cauchy horizon merge with the singularities on event horizon, which will lead to the first-order phase transition of Kerr black holes.展开更多
Considering corrections to all orders in Planck length on the quantum state density from a generalized uncertainty principle (GUP), we calculate the statistical entropy of the Bose field and Fermi field on the backg...Considering corrections to all orders in Planck length on the quantum state density from a generalized uncertainty principle (GUP), we calculate the statistical entropy of the Bose field and Fermi field on the background of the four-dimensional spherically symmetric black holes without any cutoff. It is obtained that the statistical entropy is directly proportional to the area of horizon.展开更多
The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is show...The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is shown that the quantum entropy has both the linearly and the logarithmically divergent terms. For electromagnetic field, these terms depend on the characteristic of the black hole; while for gravitational field, they depend not only on the characteristic of the black hole but also on the spin of the fields.展开更多
文摘It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities.
基金Supported by the National Natural Science Foundation of China under Grant No.19773003the Research Fund for Doctoral Program of Higher Education under Grant No.96002701.
文摘We improve the brick-wall model to take only the contribution of a thin film near the event horizon into account.This improvement not only gives us a satisfactory result,but also avoids some drawbacks in the original brick-wall method such as the little mass approximation,neglecting logarithm term,and taking the term L3 as the contribution of the vacuum surrounding a black hole.It is found that there is an intrinsic relation between the event horizon and the entropy.The event horizon is the characteristic of a black hole,so the entropy calculating of a black hole is also naturally related to its horizon.
基金Youth Scientific Foundation of Sichuan Education Department,国家自然科学基金
文摘Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
文摘Using the thin film brick-wall model and WKB approximation, the entropy of the Dirac field in the non-stationary and slowly changing Reissner-Nordstrom (R-N) black hole is calculated. The result shows that the entropy of the R-N black hole is still proportional to its surface area if we choose proper cut-off.
文摘In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arising from the higher curvature terms of the gravitational action. For the scalar field, the renormalized Newton constant and two renormalized coupling constants in the toroidal black hole are the same as those in the Reissner-Nordstrom black hole except for other one.
基金supported by the Natural Science Foundation of Shanxi Province,China(Grant No 2006011012)the Doctoral Scientific Research Starting Foundation of Shanxi Datong University,China
文摘By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein-Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein-Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates.
基金The project supported by the Natural Science Foundation of Shanxi Province under Grant No. 2006011012 tCorresponding author,
文摘Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-- Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coetticient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty prlnciple and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.
基金Supported by the National Natural Science Foundation of China under Grant No.10573004
文摘We discuss the entropy of the Garfinkle-Horowitz-Strominger dilaton black hole by using the thin film brick-wall model, and the entropy obtained is proportional to the horizon area of the black hole confirming the Bekenstein-Hawking's area-entropy formula. Then, by comparing with the original brick-wall method, we find that the result obtained by the thin film method is more reasonable avoiding some drawbacks, such as little mass approximation, neglecting logarithm term, and taking the term L^3 as a contribution of the vacuum surrounding the black hole, and the physical meaning of the entropy is more clearer.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374075 and Natural Science Foundation of Shanxi Province of China under Grant No. 20001009
文摘The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Fhrther it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
基金the National Natural Science Foundation of China(Grant No.19873013 and No.10073006)
文摘Using the membrane model based on the brick-wall model, we calculate the free energy and entropy of dilatonic black hole due to arbitrary spin fields. The result shows that the entropy of scalar field and the entropy of Fermionic field have similar formulas. There is only a numerical coefficient between them.
基金supported by the National Natural Science Foundation of China (Grant No 10773002)
文摘By using the new equation of state density derived from the generalized uncertainty relation, the number of the quantum states near event horizon is obtained, with which then the information entropy of static spherically symmetric black holes has been discussed. It is found that the divergent integral of quantum states near the event horizon can be naturally avoided if using the new equation of state density without introducing the ultraviolet cut-off. The information entropy of black holes can be obtained precisely by the residue theorem, which is shown to be proportional to the horizon area. The information entropy of black holes obtained agrees with the Bechenstein-Hawking entropy when the suitable cutoff factor is adopted.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11045005)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090739)
文摘By considering and using an adiabatic invariant for black holes, the area and entropy spectra of static spherically- symmetric black holes are investigated. Without using quasi-normal modes of black holes, equally-spaced area and entropy spectra are derived by only utilizing the adiabatic invariant. The spectra for non-charged and charged black holes are calculated, respectively. All these results are consistent with the original Bekenstein spectra.
文摘In the light of Ф-mapping method and the relationship between entropy and the Euler characteristic, the intrinsic topological structure of entropy of Kerr black holes is studied. From the Ganss-Bonnet-Chem theorem, it is shown that the entropy of Kerr black hole is determined by singularities of the Killing vector field of spacetime. These singularities naturally carry topological numbers, Hopf indices and Brouwer degrees, which can also be viewed as topological quantization of entropy of Kerr black holes. Specific results S = A/4 for non-extreme Kerr black holes and S = 0 for extreme ones are calculated independently by using the above-mentioned methods.
基金Project supported by the National Natural Science Foundation of China (Grant No 10675045) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No 200317) and the SRFDP (Grant No 20040542003).
文摘This paper studies the finite statistical-mechanical entropy of the Schwarzschild anti-de Sitter (ADS) spacetime arising from quantum massless scalar field by using the 'brick wall' approach in the Painlev; and Lemaaitre coordinates. At first glance, it seems that the results would be different from that in the Schwarzschild-like coordinate since both the Painlev; and the Lemaitre spacetimes do not possess the event horizon obviously. However, this paper proves that the entropies in these coordinates are exactly equivalent to that in the Schwarzschild-like coordinate.
基金Supported by the National Natural Science Foundation of China under Grant No. 10573004
文摘It has been shown that non-rotating black holes Recently study showed that thermal fluctuations would give in three or four dimensions possess a canonical entropy. rise to logarithmic corrections to Bekenstein Hawking entropy in area with a model-dependent uncertain coefficient. In this paper, the thermal fluctuations on Bekenstein-Hawking entropy in three-dimensional AdS black holes, Schwarzschild-de Sitter space and Kerr-de Sitter (KdS) spacetime with J = 0 will be considered based on a uniformly spaced area spectrum approach. Our conclusion shows that there is the same correction form in all cases we considered.
基金Supported by the National Natural Science Foundation of China under Grant No.10573004
文摘There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term & given by the logarithm of black hole area with a model-dependent coefficient. Recently the research for quantum gravity implies the emergence of a modification of the energy-momentum dispersion relation (MDR), which plays an important role in the modified black hole thermodynamics. In this paper, we investigate the quantum corrections to Bekenstein-Hawking entropy in four-dimensional Sehwarzschild black hole and Reissner-Nordstrom black hole respectively based on MDR.
基金the National Natural Science Foundation of China under,山西省自然科学基金
文摘In this paper, we discuss leading-order corrections to the entropy of Kerr black hole due to thermal fluctuations in the finite cavity. Then temperature is constant, the solution of the black hole is obtained within a cavity, that is, the solution of the spacetime after considering the radiation of the black hole. Therefore, we derive that the location of the black hole horizon and specific heat are the functions of temperature and the radius of the cavity.Corrections to entropy also are related to the radius of the cavity. Through calculation, we obtain conditions of taking the value of the cavity's radius. We provide a new way for studying the corrections of complicated spacetimes.
基金The project supported by the Natural Science Foundation of Shanghai Municipal Commission of Science and Technology under Grant Nos. 04ZR14059 and 04DZ05905, National Natural Science Foundation of China under Grant No. 10447125
文摘In the light of topological current and the relationship between the entropy and the Euler characteristic, the topological aspects of entropy and phase transition of Kerr black holes are studied. From Gauss-Bonnet-Chern theorem, it is shown that the entropy of Kerr black holes is determined by the singularities of the Killing vector field of spacetime. By calculating the Hopf indices and Brouwer degrees of the Killing vector field at the singularities, the entropy S = A/4 for nonextreme Kerr black holes and S = 0 for extreme ones are obtained, respectively. It is also discussed that, with the change of the ratio of mass to angular momentum for unit mass, the Euler characteristic and the entropy of Kerr black holes will change discontinuously when the singularities on Cauchy horizon merge with the singularities on event horizon, which will lead to the first-order phase transition of Kerr black holes.
基金The project supported by Shanxi Natural Science Foundation of China under Grant No. 2006011012
文摘Considering corrections to all orders in Planck length on the quantum state density from a generalized uncertainty principle (GUP), we calculate the statistical entropy of the Bose field and Fermi field on the background of the four-dimensional spherically symmetric black holes without any cutoff. It is obtained that the statistical entropy is directly proportional to the area of horizon.
基金Funded by the Natural Science Foundation of China (Grant No10375051)
文摘The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is shown that the quantum entropy has both the linearly and the logarithmically divergent terms. For electromagnetic field, these terms depend on the characteristic of the black hole; while for gravitational field, they depend not only on the characteristic of the black hole but also on the spin of the fields.