The following paper tries to derive a Black-Scholes equation by using tools of quantum physics pertaining in that sense to Hamiltonian operator, path integrals, completeness equation, introducing ket and bra vectors. ...The following paper tries to derive a Black-Scholes equation by using tools of quantum physics pertaining in that sense to Hamiltonian operator, path integrals, completeness equation, introducing ket and bra vectors. Schrodinger Hamiltonian is presented and compared to Black-Scholes-Schrodinger Hamiltonian. Similarity was demonstrated and it was proved that Schrodinger Hamiltonian was Hermitian while Black-Scholes Hamiltonian was anti-Hermitian. By using Schrodinger equation, price of option was implemented in the Schrodinger equation and by using Black-Scholes Hamiltonian. Black-Scholes equation was derived and a new and really powerful approach was demonstrated that could have immense application in the quantitative analysis and asset pricing.展开更多
We introduce two algorithms in order to find the exact solution of the nonlinear Time-fractional Partial differential equation, in this research work. Those algorithms are proposed in the following structure: The Modi...We introduce two algorithms in order to find the exact solution of the nonlinear Time-fractional Partial differential equation, in this research work. Those algorithms are proposed in the following structure: The Modified Homotopy Perturbation Method (MHPM), The Homotopy Perturbation and Sumudu Transform Method. The results achieved using the both methods are the same. However, we calculate the approached theoretical solution of the Black-Scholes model in the form of a convergent power series with a regularly calculated element. Finally, we propose a descriptive example to demonstrate the efficiency and the simplicity of the methods.展开更多
In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options...In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options. From the viscosity solution of a PDE, a unique viscosity solution was obtained for the semilinear Black-Scholes PDE.展开更多
Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of Europ...Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.展开更多
In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The ev...In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10.展开更多
文摘The following paper tries to derive a Black-Scholes equation by using tools of quantum physics pertaining in that sense to Hamiltonian operator, path integrals, completeness equation, introducing ket and bra vectors. Schrodinger Hamiltonian is presented and compared to Black-Scholes-Schrodinger Hamiltonian. Similarity was demonstrated and it was proved that Schrodinger Hamiltonian was Hermitian while Black-Scholes Hamiltonian was anti-Hermitian. By using Schrodinger equation, price of option was implemented in the Schrodinger equation and by using Black-Scholes Hamiltonian. Black-Scholes equation was derived and a new and really powerful approach was demonstrated that could have immense application in the quantitative analysis and asset pricing.
文摘We introduce two algorithms in order to find the exact solution of the nonlinear Time-fractional Partial differential equation, in this research work. Those algorithms are proposed in the following structure: The Modified Homotopy Perturbation Method (MHPM), The Homotopy Perturbation and Sumudu Transform Method. The results achieved using the both methods are the same. However, we calculate the approached theoretical solution of the Black-Scholes model in the form of a convergent power series with a regularly calculated element. Finally, we propose a descriptive example to demonstrate the efficiency and the simplicity of the methods.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271072)
文摘In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options. From the viscosity solution of a PDE, a unique viscosity solution was obtained for the semilinear Black-Scholes PDE.
文摘Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.
文摘In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10.