期刊文献+
共找到99篇文章
< 1 2 5 >
每页显示 20 50 100
Black-Scholes Option Pricing Model Modified to Admit a Miniscule Drift Can Reproduce the Volatility Smile
1
作者 Matthew C. Modisett James A. Powell 《Applied Mathematics》 2012年第6期597-605,共9页
This paper develops a closed-form solution to an extended Black-Scholes (EBS) pricing formula which admits an implied drift parameter alongside the standard implied volatility. The market volatility smiles for vanilla... This paper develops a closed-form solution to an extended Black-Scholes (EBS) pricing formula which admits an implied drift parameter alongside the standard implied volatility. The market volatility smiles for vanilla call options on the S&P 500 index are recreated fitting the best volatility-drift combination in this new EBS. Using a likelihood ratio test, the implied drift parameter is seen to be quite significant in explaining volatility smiles. The implied drift parameter is sufficiently small to be undetectable via historical pricing analysis, suggesting that drift is best considered as an implied parameter rather than a historically-fit one. An overview of option-pricing models is provided as background. 展开更多
关键词 option pricing black-scholes VOLATILITY SMILE
下载PDF
An Extension of the Black-Scholes and Margrabe Formulas to a Multiple Risk Economy
2
作者 Werner Hürlimann 《Applied Mathematics》 2011年第4期427-432,共6页
We consider an economic model with a deterministic money market account and a finite set of basic economic risks. The real-world prices of the risks are represented by continuous time stochastic processes satisfying a... We consider an economic model with a deterministic money market account and a finite set of basic economic risks. The real-world prices of the risks are represented by continuous time stochastic processes satisfying a stochastic differential equation of diffusion type. For the simple class of log-normally distributed instantaneous rates of return, we construct an explicit state-price deflator. Since this includes the Black-Scholes and the Vasicek (Ornstein-Uhlenbeck) return models, the considered deflator is called Black-Scholes- Vasicek deflator. Besides a new elementary proof of the Black-Scholes and Margrabe option pricing formulas a validation of these in a multiple risk economy is achieved. 展开更多
关键词 State-Price Deflator option pricing black-scholes MODEL Vasicek MODEL Margrabe formula
下载PDF
Pricing Formulae of Asian Options under the Fractional Brownian Motion
3
作者 张超 张寄洲 《Journal of Donghua University(English Edition)》 EI CAS 2010年第5期656-659,共4页
In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equat... In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equation(PDE).The call-put parity for the geometric average Asian options is given.The results are generalization of option pricing under standard Brownian motion. 展开更多
关键词 fractional Brownian motion Asian option black-scholes formula
下载PDF
A Boundary Element Formulation for the Pricing of Barrier Options
4
作者 Shih-Yu Shen Yi-Long Hsiao 《Open Journal of Modelling and Simulation》 2013年第3期30-35,共6页
In this article, we derive a boundary element formulation for the pricing of barrier option. The price of a barrier option is modeled as the solution of Black-Scholes’ equation. Then the problem is transformed to a b... In this article, we derive a boundary element formulation for the pricing of barrier option. The price of a barrier option is modeled as the solution of Black-Scholes’ equation. Then the problem is transformed to a boundary value problem of heat equation with a moving boundary. The boundary integral representation and integral equation are derived. A boundary element method is designed to solve the integral equation. Special quadrature rules for the singular integral are used. A numerical example is also demonstrated. This boundary element formulation is correct. 展开更多
关键词 BOUNDARY Element Method black-scholes Equation Moving BOUNDARY option pricing BARRIER option
下载PDF
证券估值Black-Scholes模型的一般化(英文) 被引量:8
5
作者 张顺明 邓敏 《经济数学》 1999年第2期13-20,共8页
本文研究证券估值Black-Scholes 模型的一般化.一般化模型推导偏微分方程,然后用分离变量法考虑抛物型方程的Cauchy
关键词 black-scholes模型 期权定价公式 抛物型方程的Cauchy问题 分离变量法
下载PDF
非线性Black-Scholes模型下利差期权定价 被引量:1
6
作者 韩婵 陈东立 《西南师范大学学报(自然科学版)》 CAS 北大核心 2019年第7期110-116,共7页
研究了原生资产价格遵循非线性Black-Scholes模型时的利差期权定价问题.利用扰动理论中单参数摄动展开方法,给出了利差期权的近似定价公式.最后,结合Feyman-Kac公式分析了近似定价公式的误差估计问题,结果表明近似解一致收敛于相应期权... 研究了原生资产价格遵循非线性Black-Scholes模型时的利差期权定价问题.利用扰动理论中单参数摄动展开方法,给出了利差期权的近似定价公式.最后,结合Feyman-Kac公式分析了近似定价公式的误差估计问题,结果表明近似解一致收敛于相应期权价格的精确解. 展开更多
关键词 非线性black-scholes模型 障碍期权 近似定价公式 误差分析
下载PDF
基于欧式期权的Black-Scholes定价公式研究
7
作者 王琦 高岩 《上海第二工业大学学报》 2007年第4期338-341,共4页
波动率是期权定价中的一个重要参数,但Black-Schooles公式在σ=0时无意义。解释了当σ=0时的金融意义;利用无套利原理得到了当σ=0时欧式期权的定价公式,结合对冲方法和Ito公式推导了期权价格所满足的偏微分方程,并在极限意义下,证明了B... 波动率是期权定价中的一个重要参数,但Black-Schooles公式在σ=0时无意义。解释了当σ=0时的金融意义;利用无套利原理得到了当σ=0时欧式期权的定价公式,结合对冲方法和Ito公式推导了期权价格所满足的偏微分方程,并在极限意义下,证明了Black-Scholes公式对于σ=0时也成立,给出了波动率很小时期权价格的近似估计。 展开更多
关键词 期权定价 波动率 风险中性 black-scholes公式
下载PDF
在风险中性的假设下求证Black-scholes公式
8
作者 李美蓉 《合肥师范学院学报》 2008年第3期12-15,共4页
Black-scholes期权定价公式的推导过程相当复杂,需要用到随机过程和求解随机微分方程等较高深的数学工具,本文将在风险中性的假设下给出两种Black-scholes期权定价公式的简洁推导方法,使得具有概率统计和微积分基本知识的读者也能理解... Black-scholes期权定价公式的推导过程相当复杂,需要用到随机过程和求解随机微分方程等较高深的数学工具,本文将在风险中性的假设下给出两种Black-scholes期权定价公式的简洁推导方法,使得具有概率统计和微积分基本知识的读者也能理解并欣赏这一公式的导出过程。 展开更多
关键词 black-scholes期权定价公式 对数正态分布 风险中性
下载PDF
美式期权的Black-Scholes的定价方法及鞅 被引量:2
9
作者 郭园园 王永茂 路秀玲 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第11期1576-1579,共4页
为求解违约时间为无穷大时美式期权的执行价格.结合期权执行时间服从布朗运动的特点,对期权执行时间进行了鞅分析,并求出停时价格为确定值时的概率,通过鞅方法对B-S微分方程求解,得出基于鞅的期权价格;通过期权定价的随机波动的概率密... 为求解违约时间为无穷大时美式期权的执行价格.结合期权执行时间服从布朗运动的特点,对期权执行时间进行了鞅分析,并求出停时价格为确定值时的概率,通过鞅方法对B-S微分方程求解,得出基于鞅的期权价格;通过期权定价的随机波动的概率密度分布,依个人情况选择在可承受范围内的最大值(看涨)和最小值(看跌),当最大、最小值确定时,将欧式期权的价格与可承受风险综合考虑,得出美式期权的预测价格.对风险系数偏爱不同的投资者有直接的参考作用. 展开更多
关键词 期权定价 布朗运动 鞅方法 black-scholes公式 美式期权 随机波动 风险系数 停时
下载PDF
带Poisson跳的Black-Scholes模型的期权定价
10
作者 孙洁 《价值工程》 2008年第9期147-150,共4页
主要讨论欧式期权的定价公式。首先给出一个B-S期权定价公式的简化方法,使具有一般微积分知识的读者就能理解;并假定股票价格过程遵循带Poisson跳的扩散过程,在股票预期收益率、波动率和无风险利率均为时间函数的情况下,得到欧式期权定... 主要讨论欧式期权的定价公式。首先给出一个B-S期权定价公式的简化方法,使具有一般微积分知识的读者就能理解;并假定股票价格过程遵循带Poisson跳的扩散过程,在股票预期收益率、波动率和无风险利率均为时间函数的情况下,得到欧式期权定价公式和买权与卖权之间的平价关系。 展开更多
关键词 B-S模型 期权定价公式 跳扩散过程
下载PDF
European Option Pricing under a Class of Fractional Market 被引量:4
11
作者 费为银 《Journal of Donghua University(English Edition)》 EI CAS 2010年第6期732-737,共6页
In order to price European contingent claim in a class of fractional Black-Scholes market, where the prices of assets follow a Wick-Ito stochastic differential equation driven by the fractional Brownian motion and mar... In order to price European contingent claim in a class of fractional Black-Scholes market, where the prices of assets follow a Wick-Ito stochastic differential equation driven by the fractional Brownian motion and market coefficients are deterministic functions, the pricing formula of European call option was explicitly derived by the method of the stochastic calculus of tile fractional Brownian motion. A result about fractional Clark derivative was also obtained. 展开更多
关键词 fractional Brownian motion Wick-Ito stochasticintegral fractional It( formula ~ Girsanov thoerem forfractional Brownian motion fractional Clark-Oconetheorem option pricing
下载PDF
Black-Scholes公式推导方法及其发展推广 被引量:1
12
作者 王明辉 《韶关学院学报》 2015年第8期8-12,共5页
从Black-Scholes模型的理论背景和假设条件出发,分析了该模型中期权定价公式的推导过程和国内外学者的不同推导方法,最后从放宽假设条件和扩展期权类别两个方面探讨了该公式的推广形式.
关键词 Black—Scholes模型 期权定价公式 发展推广
下载PDF
A Full Asymptotic Series of European Call Option Prices in the SABR Model with Beta = 1
13
作者 Z. Guo H. Schellhorn 《Applied Mathematics》 2019年第6期485-512,共28页
We develop two new pricing formulae for European options. The purpose of these formulae is to better understand the impact of each term of the model, as well as improve the speed of the calculations. We consider the S... We develop two new pricing formulae for European options. The purpose of these formulae is to better understand the impact of each term of the model, as well as improve the speed of the calculations. We consider the SABR model (with &beta;=1) of stochastic volatility, which we analyze by tools from Malliavin Calculus. We follow the approach of Alòs et al. (2006) who showed that under stochastic volatility framework, the option prices can be written as the sum of the classic Hull-White (1987) term and a correction due to correlation. We derive the Hull-White term, by using the conditional density of the average volatility, and write it as a two-dimensional integral. For the correction part, we use two different approaches. Both approaches rely on the pairing of the exponential formula developed by Jin, Peng, and Schellhorn (2016) with analytical calculations. The first approach, which we call “Dyson series on the return’s idiosyncratic noise” yields a complete series expansion but necessitates the calculation of a 7-dimensional integral. Two of these dimensions come from the use of Yor’s (1992) formula for the joint density of a Brownian motion and the time-integral of geometric Brownian motion. The second approach, which we call “Dyson series on the common noise” necessitates the calculation of only a one-dimensional integral, but the formula is more complex. This research consisted of both analytical derivations and numerical calculations. The latter show that our formulae are in general more exact, yet more time-consuming to calculate, than the first order expansion of Hagan et al. (2002). 展开更多
关键词 SABR MODEL Stochastic VOLATILITY Malliavin CALCULUS Exponential formula option pricing
下载PDF
On the No-arbitrage Principle and Option Pricing in a Fuzzy Market
14
作者 尤苏蓉 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期60-63,共4页
Discuss the no-arbitrage principle in a fuzzy market and present a model for pricing an option. Get a fuzzy price for the contingent claim in a market involving fuzzy elements, whose level set can be seen as the possi... Discuss the no-arbitrage principle in a fuzzy market and present a model for pricing an option. Get a fuzzy price for the contingent claim in a market involving fuzzy elements, whose level set can be seen as the possible price level interval with given belief degree. Use fuzzy densit) function and fuzzy mean as evidence for such model. Also give an example for comparing the result of the model in this article and that of another pricing method. 展开更多
关键词 black-scholes formula fuzzy price beliefdegree fuzzy density function fuzzy mean.
下载PDF
Option Pricing Method in a Market Involving Interval Number Factors
15
作者 尤苏蓉 《Journal of Donghua University(English Edition)》 EI CAS 2005年第4期47-51,共5页
The method for pricing the option in a market with interval number factors is proposed. The no-arbitrage principle in the interval number valued market and the rule to judge the reasonability of a price interval are g... The method for pricing the option in a market with interval number factors is proposed. The no-arbitrage principle in the interval number valued market and the rule to judge the reasonability of a price interval are given. Using the method, the price interval where the riskless interest and the volatility under B-S setting is given. The price interval from binomial tree model when the key factors u, d, R are all interval numbers is also discussed. 展开更多
关键词 interval number black-scholes pricing formula binomial tree model no-arbitrage.
下载PDF
Pricing Perpetual American Put Option in theMixed Fractional Brownian Motion
16
《数学计算(中英文版)》 2015年第2期41-45,共5页
Under the assumption of the underlying asset is driven by the mixed fractional Brownian motion, we obtain the mixed fractionalBlack-Scholes partial differential equation by fractional Ito formula, and the pricing form... Under the assumption of the underlying asset is driven by the mixed fractional Brownian motion, we obtain the mixed fractionalBlack-Scholes partial differential equation by fractional Ito formula, and the pricing formula of perpetual American put option bythis partial differential equation theory. 展开更多
关键词 MIXED FRACTIONAL BROWNIAN Motion Perpetual American Put option MIXED FRACTIONAL black-scholes Model option pricing
下载PDF
Modified Differential Transform Method for Solving Black-Scholes Pricing Model of European Option Valuation Paying Continuous Dividends
17
作者 AHMAD Manzoor MISHRA Rajshree JAIN Renu 《Journal of Partial Differential Equations》 CSCD 2023年第4期381-393,共13页
.Option pricing is a major problem in quantitative finance.The Black-Scholes model proves to be an effective model for the pricing of options.In this paper a com-putational method known as the modified differential tr... .Option pricing is a major problem in quantitative finance.The Black-Scholes model proves to be an effective model for the pricing of options.In this paper a com-putational method known as the modified differential transform method has been em-ployed to obtain the series solution of Black-Scholes equation with boundary condi-tions for European call and put options paying continuous dividends.The proposed method does not need discretization to find out the solution and thus the computa-tional work is reduced considerably.The results are plotted graphically to establish the accuracy and efficacy of the proposed method. 展开更多
关键词 European option pricing black-scholes equation call option put option modified differential transform method
原文传递
The Operator Splitting Method for Black-Scholes Equation
18
作者 Yassir Daoud Turgut Ozis 《Applied Mathematics》 2011年第6期771-778,共8页
The Operator Splitting method is applied to differential equations occurring as mathematical models in financial models. This paper provides various operator splitting methods to obtain an effective and accurate solut... The Operator Splitting method is applied to differential equations occurring as mathematical models in financial models. This paper provides various operator splitting methods to obtain an effective and accurate solution to the Black-Scholes equation with appropriate boundary conditions for a European option pricing problem. Finally brief comparisons of option prices are given by different models. 展开更多
关键词 Operator Splitting Method black-scholes Equation European option pricing
下载PDF
Indifference Pricing in the Single Period Binomial with Complete Market Model
19
作者 Jinyang Sun Yicheng Hong 《数学计算(中英文版)》 2018年第1期6-23,共18页
Binomial no-arbitrage price have a method is the traditional approach for derivative pricing,which is,the complete model,which makes possible the perfect replication in the market.Risk neutral pricing is an appropriat... Binomial no-arbitrage price have a method is the traditional approach for derivative pricing,which is,the complete model,which makes possible the perfect replication in the market.Risk neutral pricing is an appropriate method of asset pricing in a complete market.We have discussed an incomplete market,a non-transaction asset that produces incompleteness of the market.An effective method of asset pricing in incomplete markets is the undifferentiated pricing method.This technique was firstly introduced by Bernoulli in(1738)the sense of gambling,lottery and their expected return.It is used to command investors'preferences and better returns the results they expect.In addition,we also discuss the utility function,which is the core element of the undifferentiated pricing.We also studied some important behavior preferences of agents,and injected exponential effect of risk aversion in the model,so that the model was nonlinear in the process of claim settlement. 展开更多
关键词 COMPLETE Market Model option pricing Nonlinear pricing formula Risk Natural Measure EXPECTED Utility and INDIFFERENCE pricing
下载PDF
次分数布朗运动下具有固定敲定价格的几何平均亚式期权定价
20
作者 王春雨 郭志东 《湖北民族大学学报(自然科学版)》 CAS 2023年第2期275-280,共6页
建立了次分数布朗运动机制下具有固定敲定价格的几何平均亚式期权定价模型。运用Δ对冲技巧和Ito公式得到了几何平均亚式看涨期权在次分数机制下的偏微分方程。进一步求解偏微分方程的定解问题,得到了具有固定敲定价格的几何平均亚式看... 建立了次分数布朗运动机制下具有固定敲定价格的几何平均亚式期权定价模型。运用Δ对冲技巧和Ito公式得到了几何平均亚式看涨期权在次分数机制下的偏微分方程。进一步求解偏微分方程的定解问题,得到了具有固定敲定价格的几何平均亚式看涨期权的定价公式及看涨、看跌期权间的平价公式。数值计算结果表明,随着Hurst参数的增大,具有固定敲定价格的几何平均亚式看涨期权的价格将减小;另外,具有固定敲定价格的几何平均亚式看涨期权在次分数机制下的价格要低于其在经典布朗运动下的价格。 展开更多
关键词 次分数布朗运动 几何平均亚式期权 固定敲定价格 ITO公式 Δ对冲技巧
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部