To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing ...To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing wind tunnel. Tests were carried out at some typical attack angles under different wind speeds and flow discharges of a water spray with wind. The icing shape and area on blade surface were recorded and measured, Then the numerical computation was carded out to calculate the lift and drag coefficients of the blade before and after ice accretion according to the experiment result, the effect of icing on the aerodynamic characteristics of blade were discussed.展开更多
The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance...The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine.展开更多
We investigated the solid–liquid suspension characteristics in the tank with a liquid height/tank diameter ratio of 1.5 stirred by a novel long-short blades(LSB) impeller by the Euler granular flow model coupled with...We investigated the solid–liquid suspension characteristics in the tank with a liquid height/tank diameter ratio of 1.5 stirred by a novel long-short blades(LSB) impeller by the Euler granular flow model coupled with the standard k–ε turbulence model. After validation of the local solid holdup by experiments,numerical predictions have been successfully used to explain the influences of impeller rotating speed,particle density, particle size, liquid viscosity and initial solid loading on the solid suspension behavior,i.e. smaller particles with lower density are more likely to be suspended evenly in the liquid with higher liquid viscosity. At a low impeller rotating speed(N), increase in N leads to an obvious improvement in the solid distribution homogeneity. Moreover, the proposed LSB impeller has obvious advantages in the uniform distribution of the solid particles compared with single Rushton turbine(RT), dual RT impellers or CBY hydrofoil impeller under the same power consumption.展开更多
This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field valida...This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field validation by the particle image velocimetry,large eddy simulation method coupled with sliding mesh approach was used to study the effect of the pitched SBs on the flow characteristics.We changed the inclined angles of the SBs from 30°to 60°and compared the flow characteristics when the impeller was operated in the down-pumping and up-pumping modes.In the case of down-pumping mode,the power number is relatively smaller and vortexes below the SBs are suppressed,leading to turbulence intensification in the bottom of the vessel.Whereas in the case of up-pumping mode,the axial flow rate in the center increased significantly with bigger power number,resulting in more efficient mass exchange between the axial and radial flows in the whole vessel.The LSB with 45°inclined angle of the SBs in the up-pumping mode has the most uniform distributions of flow field and turbulent kinetic energy compared with other impeller configurations.展开更多
Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient ...Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment.In this work,the performance characteristics of a new type of elastic-blade/wave-energy converter(EBWEC)and its core energy conversion component(named wave energy absorber)are comprehensively studied.In particular,computational fluid dynamics(CFD)simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC.The pressure cloud diagrams relating to the surface of the elastic blade were obtained through two-way fluid-solid coupling simulations.The influence of blade thickness and relative speed on the performance characteristics of EBWEC was analyzed accordingly.A prototype of the EBWEC and its bucket test platform were also developed.The power characteristics of the EBWEC were analyzed and studied by using the blade thickness and motion cycle as control variables.The present research shows that the EBWEC can effectively overcome the performance disadvantages related to the transmission shaft torque load and power curve fluctuations of rigid blade wave energy converters(RBWEC).展开更多
A new method for design of turbomachinery blades is presented. The parameters of a compressor blade are created from the Computational Fluid Dynamics (CFD) software CFX-BladeGen, and are inputted to the Computer Aid...A new method for design of turbomachinery blades is presented. The parameters of a compressor blade are created from the Computational Fluid Dynamics (CFD) software CFX-BladeGen, and are inputted to the Computer Aided Design (CAD) software UG for building a curve surface model to create an entity model in UG. The result shows that the blade model is favorable from the entity effect and reflection analysis and the model process is useful for the CAD model creation of turbomachinery blades.展开更多
The aero-engine design process is highly iterative,multidisciplinary in nature and complex.The success of any engine design depends on best exploiting and considering the interactions among the numerous traditional en...The aero-engine design process is highly iterative,multidisciplinary in nature and complex.The success of any engine design depends on best exploiting and considering the interactions among the numerous traditional engineering disciplines such as aerodynamics and structures.More emphasis has been placed lately on system integration,cross disciplines leveraging of tools and multi-disciplinary-optimization at the preliminary design phase.This paper investigates the automation of the airfoil generation process,referred to as Rapid Airfoil3D(RAF-3D),for uncooled high pressure turbine blades at the preliminary design phase.This approach uses the TAML(Turbine Aero Mean Line)program in parallel with a database of previously designed P&WC airfoils,in-house design rules and best practices to define a pre-detailed airfoil shape which can be fed back to other analytical groups for pre-detail analyses,such as for structural integrity and vibrations.Resulting airfoil shapes have been aerodynamically validated using an in-house three dimensional Reynolds averaged Navier-Stokes code.RAF-3D will shorten the turnaround time for Pratt&Whitney turbine aerodynamics group to provide a preliminary3D airfoil shape to turbine structures group by up to a factor of ten.Additionally,the preliminary assessments of stress and vibration specialists will be more accurate as their assessments will be based on an airfoil that has had inputs from all functional groups even though it is"first pass"design.展开更多
In previous work, we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces. This method is referred...In previous work, we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces. This method is referred to as Unsteady Blade Element Theory (UBET). A comparison between UBET and Computational Fluid Dynamics (CFD) for flapping wings with high flapping frequencies (〉30 Hz) could not be found in literature survey. In this paper, UBET that considers the movement of pressure center in pitching-moment estimation was validated using the CFD method. We investigated three three-dimensional (3D) wing kinematics that produce negative, zero, and positive aerodynamic pitching moments. For all cases, the instantaneous aerodynamic forces and pitching moments estimated via UBET and CFD showed similar trends. The differences in average vertical forces and pitching moments about the center of gravity were about 10% and 12%, respectively. Therefore, UBET is proven to reasonably estimate the aerodynamic forces and pitching moment for flight dynamic study of FW-MAV. However, the differences in average wing drags and pitching moments about the feather axis were more than 20%. Since study of aerodynamic power requires reasonable estimation of wing drag and pitching moment about the feather axis, UBET needs further im- provement for hilzher accuracy.展开更多
The concentric internally heat-integrated distillation column(HIDi C) has advantages of low energy consumption and high thermodynamic efficiency. However, its drawbacks of limited heat transfer area,complex internal s...The concentric internally heat-integrated distillation column(HIDi C) has advantages of low energy consumption and high thermodynamic efficiency. However, its drawbacks of limited heat transfer area,complex internal structure, and large number of control parameters hinder its widespread industrial applications. To solve these challenges, in this work a novel sleeve-like concentric heat-integrated separation column, namely temperature-controlled phase change column(TCPC), was developed to separate liquid mixtures in a more effective and energy-saving way with reflux section being moved and trays being replaced with spiral corrugation blades. The comprehensive performances of TCPC in ethanol-water system was firstly evaluated by experiments. The results showed that TCPC performs well in ethanol-water separation due to the internal spiral corrugation significantly reducing the vapor-liquid contact in separation section. Meanwhile, compared to the concentric HIDi C, TCPC has a higher total heat transfer coefficient due to the larger heat transfer area. Computational fluid dynamics simulation reveals the internal design of TCPC inducing secondary vortices of the vapor, enhancing condensation heat transfer and separation efficiency. Further, increasing the mass flow rate within a certain range would enhance the comprehensive performance factor and lead to more effective separation.展开更多
Recently, a number of environmental problems caused from fossil fuel combustion have been focused on. In addition, with the eventual depletion of fossil energy resources, hydrogen gas is expected to be an alternative ...Recently, a number of environmental problems caused from fossil fuel combustion have been focused on. In addition, with the eventual depletion of fossil energy resources, hydrogen gas is expected to be an alternative energy resource in the near future. It is characterized by high energy per unit weight, high reaction rate, wide range of flammability and the low emission property. On the other hand, many researches have been underway in several countries to improve a propulsion system for an advanced aircraft. The system is required to have higher power, lighter weight and lower emissions than existing ones. In such a future propulsion system, hydrogen gas would be one of the promising fuels for realizing the requirements. Considering these backgrounds, our group has proposed a new cycle concept for hydrogen-fueled aircraft propulsion system. In the present study, we perform 3 dimensional computations of turbulent flow fields with hydrogen-fueled combustion around a turbine blade. The main objective is to clarify the influence of arrangement of hydrogen injector holes. Changing the chordwise and spanwise spacings of the holes, the 3 dimensional nature of the flow and thermal fields is numerically studied.展开更多
基金Supported by National Natural Science Foundation of China (10702015)
文摘To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing wind tunnel. Tests were carried out at some typical attack angles under different wind speeds and flow discharges of a water spray with wind. The icing shape and area on blade surface were recorded and measured, Then the numerical computation was carded out to calculate the lift and drag coefficients of the blade before and after ice accretion according to the experiment result, the effect of icing on the aerodynamic characteristics of blade were discussed.
文摘The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine.
基金the financial support from the National Natural Science Foundation of China (22078058)Open Research Fund Program of CAS Key Laboratory of Energy Regulation Materials (ORFP2020–02)
文摘We investigated the solid–liquid suspension characteristics in the tank with a liquid height/tank diameter ratio of 1.5 stirred by a novel long-short blades(LSB) impeller by the Euler granular flow model coupled with the standard k–ε turbulence model. After validation of the local solid holdup by experiments,numerical predictions have been successfully used to explain the influences of impeller rotating speed,particle density, particle size, liquid viscosity and initial solid loading on the solid suspension behavior,i.e. smaller particles with lower density are more likely to be suspended evenly in the liquid with higher liquid viscosity. At a low impeller rotating speed(N), increase in N leads to an obvious improvement in the solid distribution homogeneity. Moreover, the proposed LSB impeller has obvious advantages in the uniform distribution of the solid particles compared with single Rushton turbine(RT), dual RT impellers or CBY hydrofoil impeller under the same power consumption.
基金financial support from the National Natural Science Foundation of China (22078058)。
文摘This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field validation by the particle image velocimetry,large eddy simulation method coupled with sliding mesh approach was used to study the effect of the pitched SBs on the flow characteristics.We changed the inclined angles of the SBs from 30°to 60°and compared the flow characteristics when the impeller was operated in the down-pumping and up-pumping modes.In the case of down-pumping mode,the power number is relatively smaller and vortexes below the SBs are suppressed,leading to turbulence intensification in the bottom of the vessel.Whereas in the case of up-pumping mode,the axial flow rate in the center increased significantly with bigger power number,resulting in more efficient mass exchange between the axial and radial flows in the whole vessel.The LSB with 45°inclined angle of the SBs in the up-pumping mode has the most uniform distributions of flow field and turbulent kinetic energy compared with other impeller configurations.
基金financially supported by the National Natural Science Foundation of China(Grant Number 51475465)the Hunan Provincial Innovation Foundation for Postgraduate(Grant Number CX2015B014).
文摘Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment.In this work,the performance characteristics of a new type of elastic-blade/wave-energy converter(EBWEC)and its core energy conversion component(named wave energy absorber)are comprehensively studied.In particular,computational fluid dynamics(CFD)simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC.The pressure cloud diagrams relating to the surface of the elastic blade were obtained through two-way fluid-solid coupling simulations.The influence of blade thickness and relative speed on the performance characteristics of EBWEC was analyzed accordingly.A prototype of the EBWEC and its bucket test platform were also developed.The power characteristics of the EBWEC were analyzed and studied by using the blade thickness and motion cycle as control variables.The present research shows that the EBWEC can effectively overcome the performance disadvantages related to the transmission shaft torque load and power curve fluctuations of rigid blade wave energy converters(RBWEC).
文摘A new method for design of turbomachinery blades is presented. The parameters of a compressor blade are created from the Computational Fluid Dynamics (CFD) software CFX-BladeGen, and are inputted to the Computer Aided Design (CAD) software UG for building a curve surface model to create an entity model in UG. The result shows that the blade model is favorable from the entity effect and reflection analysis and the model process is useful for the CAD model creation of turbomachinery blades.
文摘The aero-engine design process is highly iterative,multidisciplinary in nature and complex.The success of any engine design depends on best exploiting and considering the interactions among the numerous traditional engineering disciplines such as aerodynamics and structures.More emphasis has been placed lately on system integration,cross disciplines leveraging of tools and multi-disciplinary-optimization at the preliminary design phase.This paper investigates the automation of the airfoil generation process,referred to as Rapid Airfoil3D(RAF-3D),for uncooled high pressure turbine blades at the preliminary design phase.This approach uses the TAML(Turbine Aero Mean Line)program in parallel with a database of previously designed P&WC airfoils,in-house design rules and best practices to define a pre-detailed airfoil shape which can be fed back to other analytical groups for pre-detail analyses,such as for structural integrity and vibrations.Resulting airfoil shapes have been aerodynamically validated using an in-house three dimensional Reynolds averaged Navier-Stokes code.RAF-3D will shorten the turnaround time for Pratt&Whitney turbine aerodynamics group to provide a preliminary3D airfoil shape to turbine structures group by up to a factor of ten.Additionally,the preliminary assessments of stress and vibration specialists will be more accurate as their assessments will be based on an airfoil that has had inputs from all functional groups even though it is"first pass"design.
文摘In previous work, we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces. This method is referred to as Unsteady Blade Element Theory (UBET). A comparison between UBET and Computational Fluid Dynamics (CFD) for flapping wings with high flapping frequencies (〉30 Hz) could not be found in literature survey. In this paper, UBET that considers the movement of pressure center in pitching-moment estimation was validated using the CFD method. We investigated three three-dimensional (3D) wing kinematics that produce negative, zero, and positive aerodynamic pitching moments. For all cases, the instantaneous aerodynamic forces and pitching moments estimated via UBET and CFD showed similar trends. The differences in average vertical forces and pitching moments about the center of gravity were about 10% and 12%, respectively. Therefore, UBET is proven to reasonably estimate the aerodynamic forces and pitching moment for flight dynamic study of FW-MAV. However, the differences in average wing drags and pitching moments about the feather axis were more than 20%. Since study of aerodynamic power requires reasonable estimation of wing drag and pitching moment about the feather axis, UBET needs further im- provement for hilzher accuracy.
文摘The concentric internally heat-integrated distillation column(HIDi C) has advantages of low energy consumption and high thermodynamic efficiency. However, its drawbacks of limited heat transfer area,complex internal structure, and large number of control parameters hinder its widespread industrial applications. To solve these challenges, in this work a novel sleeve-like concentric heat-integrated separation column, namely temperature-controlled phase change column(TCPC), was developed to separate liquid mixtures in a more effective and energy-saving way with reflux section being moved and trays being replaced with spiral corrugation blades. The comprehensive performances of TCPC in ethanol-water system was firstly evaluated by experiments. The results showed that TCPC performs well in ethanol-water separation due to the internal spiral corrugation significantly reducing the vapor-liquid contact in separation section. Meanwhile, compared to the concentric HIDi C, TCPC has a higher total heat transfer coefficient due to the larger heat transfer area. Computational fluid dynamics simulation reveals the internal design of TCPC inducing secondary vortices of the vapor, enhancing condensation heat transfer and separation efficiency. Further, increasing the mass flow rate within a certain range would enhance the comprehensive performance factor and lead to more effective separation.
文摘Recently, a number of environmental problems caused from fossil fuel combustion have been focused on. In addition, with the eventual depletion of fossil energy resources, hydrogen gas is expected to be an alternative energy resource in the near future. It is characterized by high energy per unit weight, high reaction rate, wide range of flammability and the low emission property. On the other hand, many researches have been underway in several countries to improve a propulsion system for an advanced aircraft. The system is required to have higher power, lighter weight and lower emissions than existing ones. In such a future propulsion system, hydrogen gas would be one of the promising fuels for realizing the requirements. Considering these backgrounds, our group has proposed a new cycle concept for hydrogen-fueled aircraft propulsion system. In the present study, we perform 3 dimensional computations of turbulent flow fields with hydrogen-fueled combustion around a turbine blade. The main objective is to clarify the influence of arrangement of hydrogen injector holes. Changing the chordwise and spanwise spacings of the holes, the 3 dimensional nature of the flow and thermal fields is numerically studied.