期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Biopolymer passivation for high-performance perovskite solar cells by blade coating 被引量:1
1
作者 Shudi Qiu Xin Xu +8 位作者 Linxiang Zeng Zhen Wang Yijun Chen Culling Zhang Chaohui Li Jinlong Hu Tingting Shi Yaohua Mai Fei Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期45-52,共8页
Thin films of perovskite deposited from solution inevitably introduce large number of defects,which serve as recombination centers and are detrimental for solar cell performance.Although many small molecules and polym... Thin films of perovskite deposited from solution inevitably introduce large number of defects,which serve as recombination centers and are detrimental for solar cell performance.Although many small molecules and polymers have been delicately designed to migrate defects of perovskite films,exploiting credible passivation agents based on natural materials would offer an alternative approach.Here,an ecofriendly and cost-effective biomaterial,ploy-L-lysine(PLL),is identified to effectively passivate the defects of perovskite films prepared by blade-coating.It is found that incorporation of a small amount(2.5 mg mL^(-1))of PLL significantly boosts the performance of printed devices,yielding a high efficiency of 19.45% with an increase in open-circuit voltage by up to 100 mV.Density functional theory calculations combined with X-ray photoelectron spectroscopy reveal that the functional groups(-NH2,-COOH)of PLL effectively migrate the Pb-I antisite defects via Pb-N coordination and suppress the formation of metallic Pb in the blade-coated perovskite film.This work suggests a viable avenue to exploit passivation agents from natural materials for preparation of high-quality perovskite layers for optoelectronic applications. 展开更多
关键词 Perovskite solar cells blade coating Biopolymer passivation Density functional theory
下载PDF
Highly oriented MXene/polyvinyl alcohol films prepared by scalable layer-by-layer blade coating for efficient electromagnetic interference shielding and infrared stealth
2
作者 Jingyu Dong Zhaoyang Li +3 位作者 Congqi Liu Bing Zhou Chuntai Liu uezhan Feng 《Nano Research》 SCIE EI CSCD 2024年第6期5651-5660,共10页
Controlling the orientation of two-dimensional MXene within layered films is essential to optimize or tune their mechanical properties and electromagnetic interference shielding(EMI)performance,but achieving the high ... Controlling the orientation of two-dimensional MXene within layered films is essential to optimize or tune their mechanical properties and electromagnetic interference shielding(EMI)performance,but achieving the high orientation MXene layers on an industrial scale remains a challenging goal.In this paper,a scalable layer-by-layer blade coating(LbLBC)method was employed to fabricate highly oriented MXene/polyvinyl alcohol(PVA)films.During the LbLBC process,MXene/PVA colloid suffered a strong shearing effect,which induced the ordered alignment of MXene nanosheets along the direction of the blade movement.The orientation of MXene can be effectively adjusted by changing the scraping gap of LbLBC,achieving a maximum Herman orientation factor f of 0.81.As a result,the mechanical properties and EMI performance of the as-prepared MXene/PVA films are in direct proportion to their orientation,with the optimal values of tensile strength of 145.5 MPa,fracture strain of 19.6%,toughness of 17.7 MJ·m^(−3),and EMI shielding effectiveness of 36.7 dB.Furthermore,the inherently low mid-infrared(mid-IR)emissivity of MXene,combined with the densely oriented structure affords the composite films with IR stealth,resulting in a substantial decrease from 150 to 66.1℃in the radiative temperature of a surface.Conclusively,these scalable MXene/PVA films exhibit remarkable potential for integration into the next generation of multifunctional protective camouflage materials. 展开更多
关键词 MXene nanosheets densely oriented structure layer-by-layer blade coating electromagnetic interference shielding infrared stealth
原文传递
A Solution Processable Flexible Transparent Conductive Graphene/PEDOT : PSS Film Fabricated by Spin and Blade Coating 被引量:1
3
作者 房霄竹 范志君 +7 位作者 顾宜宸 史佳雯 陈敏 陈学文 邱韶华 ZABIHI Fatemeh ESLAMIAN Morteza 陈倩栎 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第1期106-111,共6页
Flexible transparent conductive films were made on PET substrates by spin and blade coating, using graphene sheets dispersed in PEDOT : PSS solution. Ultrasonic substrate vibration was used to improve microstructure a... Flexible transparent conductive films were made on PET substrates by spin and blade coating, using graphene sheets dispersed in PEDOT : PSS solution. Ultrasonic substrate vibration was used to improve microstructure and properties of the films. Comparing to the pristine PEDOT : PSS film, the sheet resistance is 3 to 4 orders of magnitude lower with the addition of graphene. The conductivity and reproducibility of the film are improved for two-layer films comparing to one-layer films, with a reduction in transparency. Films prepared with substrate vibration showed lower sheet resistance for one-layer films, as the size of dewetting areas is reduced. In addition, large-area flexible films with desirable conductivity and transmittance were successfully fabricated by blade coating, which is promising, as the process is low-cost, scalable and compatible with roll-to-roll manufacturing. 展开更多
关键词 GRAPHENE PEDOT:PSS solution-processing blade coating ultrasonic substrate vibration
原文传递
Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells
4
作者 Xinzhao Zhao Mingyu Li +6 位作者 Tianjun Ma Jun Yan Gomaa Mohamed Gomaa Khalaf Chao Chen Hsien‑Yi Hsu Haisheng Song Jiang Tang 《Frontiers of Optoelectronics》 EI CSCD 2023年第3期131-140,共10页
Infrared solar cells are more efective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region,thus also at broadening the absorption spectra and improving power conversion efciency.P... Infrared solar cells are more efective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region,thus also at broadening the absorption spectra and improving power conversion efciency.PbS colloidal quantum dots(QDs)with tunable bandgap are ideal infrared photovoltaic materials.However,QD solar cell production sufers from small-areabased spin-coating fabrication methods and unstable QD ink.Herein,the QD ink stability mechanism was fully investigated according to Lewis acid–base theory and colloid stability theory.We further studied a mixed solvent system using dimethylformamide and butylamine,compatible with the scalable manufacture of method-blade coating.Based on the ink system,100 cm2 of uniform and dense near-infrared PbS QDs(~0.96 eV)flm was successfully prepared by blade coating.The average efciencies of above absorber-based devices reached 11.14%under AM1.5G illumination,and the 800 nm-fltered efciency achieved 4.28%.Both were the top values among blade coating method based devices.The newly developed ink showed excellent stability,and the device performance based on the ink stored for 7 h was similar to that of fresh ink.The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices. 展开更多
关键词 PbS quantum dots Solvent engineering Colloid stability blade coating Infrared solar cells
原文传递
Comparison of different approaches for direct coupling of solid-phase microextraction to mass spectrometry for drugs of abuse analysis in plasma
5
作者 Wei Zhou Martyna N.Wieczorek +1 位作者 Runshan Will Jiang Janusz Pawliszyn 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第2期216-222,共7页
The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as b... The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as blood and plasma.In recent years,our lab has developed three novel SPME-MS techniques:SPME-microfluidic open interface-MS(SPME-MOI-MS),coated blade spray-MS(CBS-MS),and SPME-probe electrospray ionization-MS(SPME-PESI-MS).The fast and high-throughput nature of these SPME-MS technologies makes them attractive options for point-of-care analysis and anti-doping testing.However,all these three techniques utilize different SPME geometries and were tested with different MS instruments.Lack of comparative data makes it difficult to determine which of these methodologies is the best option for any given application.This work fills this gap by making a comprehensive comparison of these three technologies with different SPME devices including SPME fibers,CBS blades,and SPME-PESI probes and SPME-liquid chromatography-MS(SPME-LC-MS)for the analysis of drugs of abuse using the same MS instrument.Furthermore,for the first time,we developed different desorption chambers for MOI-MS for coupling with SPME fibers,CBS blades,and SPME-PESI probes,thus illustrating the universality of this approach.In total,eight analytical methods were developed,with the experimental data showing that all the SPME-based methods provided good analytical performance with R^(2)of linearities larger than 0.9925,accuracies between 81%and 118%,and good precision with an RSD%≤13%. 展开更多
关键词 Solid-phase microextraction Mass spectrometry Microfluidic open interface Coated blade spray Probe electrospray ionization Drug of abuse
下载PDF
Hyperbranched phthalocyanine enabling black-phase formamidinium perovskite solar cells processing and operating in humidity open air
6
作者 Rong Li Jiale Ding +6 位作者 Xijiao Mu Yifei Kang Anran Wang Weihui Bi Yunhe Zhang Jing Cao Qingfeng Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期141-149,I0005,共10页
The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite de... The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite devices obtained by scalable fabrication methods.Here we synthesized hyperbranched copper phthalocyanine(HCuPc)as a supramolecular additive with twisted phthalocyanine units to realize the molecular-level encapsulation at the grain boundaries through supramolecular interaction,which greatly broadened the processing window of FAPbI_(3) under high humidity.At the same time,unlike traditional encapsulation layer that carrier can only be collected by tunneling effect,the twisted phthalocyanine ring of HCu Pc in perovskite films is more conducive to hole extraction.Finally,a record efficiency was achieved in pure FAPbI_(3) based inverted structured solar cell by blade-coating to the best of our knowledge,even under unmodified humid air conditions(relative humidity of 65%–85%).The best operational stability of 3D pure FAPbI_(3) devices can also be achieved at the same time and unencapsulated HCuPc-FAPbI_(3) device can even operate with negligible degradation for 100 h in the open air(RH 30%–40%). 展开更多
关键词 Perovskite solar cells α-Phase FAPbI_(3) blade coating Humid air stability Copper phthalocyanine
下载PDF
Time-course monitoring of in vitro biotransformation reaction via solid-phase microextraction-ambient mass spectrometry approaches
7
作者 Karol Jaroch Janusz Pawliszyn 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第1期186-191,共6页
The solid-phase microextraction technique quantifies analytes without considerably affecting the sample composition.Herein,a proof-of-concept study was conducted to demonstrate the use of coated probe electrospray ion... The solid-phase microextraction technique quantifies analytes without considerably affecting the sample composition.Herein,a proof-of-concept study was conducted to demonstrate the use of coated probe electrospray ionization(coated-PESI)and coated blade spray(CBS)as ambient mass spectrometry approaches for monitoring drug biotransformation.The ability of these methods was investigated for monitoring the dephosphorylation of a prodrug,combretastatin A4 phosphate(CA4P),into its active form,combretastatin A4(CA4),in a cell culture medium supplemented with fetal bovine serum.The CBS spot analysis was modified to achieve the same extraction efficiency as protein precipitation and obtained results in 7 min.Because coated-PESI performs extraction without consuming any samples,it is the preferred technique in the case of a limited sample volume.Although coated-PESI only extracts small quantities of analytes,it uses the desorption solvent volume of 5-10 pL,resulting in high sensitivity,thus allowing the detection of compounds after only 1 min of extraction.The biotransformation of CA4P into CA4 via phosphatases occurs within the simple matrix,and the proposed sample preparation techniques are suitable for monitoring the biotransformation. 展开更多
关键词 Solid-phase microextraction Coated probe electrospray ionization Coated blade spray COMBRETASTATIN BIOTRANSFORMATION Prodrug activation
下载PDF
Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer 被引量:2
8
作者 Sergio Castro-Hermosa Luana Wouk +5 位作者 Izabela Silva Bicalho Luiza de Queiroz Correa Bas de Jong Lucio Cina Thomas M.Brown Diego Bagnis 《Nano Research》 SCIE EI CAS CSCD 2021年第4期1034-1042,共9页
Fully printed perovskite solar cells(PSCs)were fabricated in air with all constituent layers,except for electrodes,deposited by the blade coating technique.The PSCs incorporated,for the first time,a nanometer-thick pr... Fully printed perovskite solar cells(PSCs)were fabricated in air with all constituent layers,except for electrodes,deposited by the blade coating technique.The PSCs incorporated,for the first time,a nanometer-thick printed bathocuproine(BCP)hole blocking buffer using blade coating and deposited at relative humidity up to 50%.The PSCs with a p-i-n structure(glass/indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)/CH_(3)NH_(3)Pbl_(3)/[6,6]-phenyl-C_(61)-butyric acid methyl ester(PCBM)/BCP/Ag)delivered a maximum power conversion efficiency(PCE)of 14.9%on an active area of 0.5 cm^(2)when measured under standard test conditions.The PSCs with a blade coated BCP delivered performance of 10%and 63%higher(in relative terms)than those incorporating a spin coated BCP or without any BCP film,respectively.The atomic force microscopy(AFM)showed that blade coated films were more homogeneous and acted also as a surface planarizer leading to a reduction of roughness which improved BCP/Ag interface lowering charge recombination.The demonstration of 15%efficient devices with all constituent layers,including nanometer-thick BCP(〜10 nm),deposited by blade coating in air,demonstrates a route for industrialization of this technology. 展开更多
关键词 PEROVSKITE buffer bathocuproine(BCP) blade coating printed electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部