To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysi...To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship.展开更多
Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the r...Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.展开更多
To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on ext...To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.展开更多
基金Projects(51175017,51245027)supported by the National Natural Science Foundation of China
文摘To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship.
基金supported by National Natural Science Foundation of China(Grant Nos.51175017,51245027)Innovation Foundation of Beihang University for PhD Graduates,China(Grant No.YWF-12-RBYJ008)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111102110011)
文摘Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.
基金Project(51175017)supported by the National Natural Science Foundation of ChinaProject(YWF-12-RBYJ-008)supported by the Innovation Foundation of Beihang University for PhD Graduates,ChinaProject(20111102110011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.