[Nie C X,Wu C X,Regular submanifolds in the conformal space Q_p^n,ChinAnn Math,2012,33B(5):695-714]中研究了共形空间Q_s^n中的正则子流形,并引入了共形空间Q_s^n中的子流形理论.本文作者将分类共形空间Q_s^n中的Blaschke拟全脐...[Nie C X,Wu C X,Regular submanifolds in the conformal space Q_p^n,ChinAnn Math,2012,33B(5):695-714]中研究了共形空间Q_s^n中的正则子流形,并引入了共形空间Q_s^n中的子流形理论.本文作者将分类共形空间Q_s^n中的Blaschke拟全脐子流形,证明伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形是共形空间中的Blaschke拟全脐子流形;反之,共形空间中的Blaschke拟全脐子流形共形等价于伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形.这一结论可看作是共形空间Q_s^n中共形迷向子流形分类定理的推广.展开更多
Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.The...Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.Then,in addition to the induced metric g on Mm,there are three other important invariants of Y:the Blaschke tensor A,the conic second fundamental form B,and the conic Mobius form C;these are naturally defined by Y and are all invariant under the group of rigid motions on E_(s)^(m+p+1).In particular,g,A,B,C form a complete invariant system for Y,as was originally shown by C.P.Wang for the case in which s=0.The submanifold Y is said to be Blaschke isoparametric if its conic Mobius form C vanishes identically and all of its Blaschke eigenvalues are constant.In this paper,we study the space-like Blaschke isoparametric submanifolds of a general codimension in the light-cone E_(s)^(m+p+1) for the extremal case in which s=p.We obtain a complete classification theorem for all the m-dimensional space-like Blaschke isoparametric submanifolds in Epm+p+1of constant scalar curvature,and of two distinct Blaschke eigenvalues.展开更多
文摘[Nie C X,Wu C X,Regular submanifolds in the conformal space Q_p^n,ChinAnn Math,2012,33B(5):695-714]中研究了共形空间Q_s^n中的正则子流形,并引入了共形空间Q_s^n中的子流形理论.本文作者将分类共形空间Q_s^n中的Blaschke拟全脐子流形,证明伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形是共形空间中的Blaschke拟全脐子流形;反之,共形空间中的Blaschke拟全脐子流形共形等价于伪Riemann空间形式中具有常数量曲率和平行的平均曲率向量场的正则子流形.这一结论可看作是共形空间Q_s^n中共形迷向子流形分类定理的推广.
基金supported by Foundation of Natural Sciences of China(11671121,11871197 and 11431009)。
文摘Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.Then,in addition to the induced metric g on Mm,there are three other important invariants of Y:the Blaschke tensor A,the conic second fundamental form B,and the conic Mobius form C;these are naturally defined by Y and are all invariant under the group of rigid motions on E_(s)^(m+p+1).In particular,g,A,B,C form a complete invariant system for Y,as was originally shown by C.P.Wang for the case in which s=0.The submanifold Y is said to be Blaschke isoparametric if its conic Mobius form C vanishes identically and all of its Blaschke eigenvalues are constant.In this paper,we study the space-like Blaschke isoparametric submanifolds of a general codimension in the light-cone E_(s)^(m+p+1) for the extremal case in which s=p.We obtain a complete classification theorem for all the m-dimensional space-like Blaschke isoparametric submanifolds in Epm+p+1of constant scalar curvature,and of two distinct Blaschke eigenvalues.