Using seawater in concrete can be considered as one of the sustainable approaches in construction industry not only to save the freshwater resource but also to promote the use of abandoned seawater resource, especiall...Using seawater in concrete can be considered as one of the sustainable approaches in construction industry not only to save the freshwater resource but also to promote the use of abandoned seawater resource, especially in the construction at the uninhabited area close to the sea where the procurement of fresh water is difficult. In this study, durability against chloride attack of seawater mixed concrete with different replacement ratio of BFS (blast furnace slag) and FA (fly ash) is discussed and the life time until the occurrence of corrosion crack is evaluated. The results show that: (1) Chloride penetration rate of seawater mixed specimens with BFS and FA is lower than that of freshwater mixed OPC (ordinary Portland cement) specimens; (2) Oxygen permeability of seawater mixed specimens with BFS and FA is almost the same or lower than that of freshwater mixed OPC specimens; (3) Total life time (corrosion incubation period and propagation period) of seawater mixed specimens with BFS and FA is almost the same or only slightly shorter than that of freshwater mixed OPC specimens. From the results, it was confirmed that the usage of seawater in concrete mixing is feasible in concrete with the appropriate BFS and FA replacement ratio.展开更多
This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>...This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.展开更多
Composites are most promising materials of recent interest. Metal matrix composites (MMCs) possess significantly improved properties compared to unreinforced alloys. There has been an increasing interest in composites...Composites are most promising materials of recent interest. Metal matrix composites (MMCs) possess significantly improved properties compared to unreinforced alloys. There has been an increasing interest in composites containing low density and low cost reinforcements. In view of the generation of large quantities of solid waste by products like fly ash and slags, the present expensive manner in which it is discarded, new methods for treating and using these solid wastes are required. Hence, composites with fly ash and granulated blast furnace (GBF) slag as reinforcements are likely to overcome the cost barrier for wide spread applications in automotive and small engine applications. In the present investigation, AA 2024 alloy-5 wt% fly ash and GBF slag composites separately were made by stir casting route. Phase identification and structural characterization were carried out on fly ash and GBF slag by X-ray diffraction studies. Scanning electron microscopy with energy dispersive X-ray spectroscopy EDS was used for microstructure analysis. The hardness and compression tests were carried out on all these alloy and composites. The SEM studies reveal that there was a uniform distribution of fly ash and GBF slag particles in the matrix phase and also very good bonding existed between the matrix and reinforcement. Improved hardness and mechanical properties were observed for both the composites compared to alloy;this increase is higher for Al-fly ash composite than Al-GBF slag composite.展开更多
High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace sla...High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace slag (GGBFS). Substitution of 10% - 30% of GGBFS by HCFA and premixing of 1% - 3% Na2CO3 to this dry binary binder was discovered to give mortar compression strength of 10 - 30 to 30 - 45 MPa at 7 and 28 days when moist cured at ambient temperature. High-calcium fly ash produced from low-temperature combustion of fuel, like in circulating fluidized bed technology, reacts with water readily and is itself a good hardening activator for GGBFS, so introduction of Na<sub>2</sub>CO<sub>3</sub> into such mix has no noticeable effect on the mortar strength. However, low-temperature HCFA has higher water demand, and the strength of mortar is compromised by this factor. As of today, our research is still ongoing, and we expect to publish more data on different aspects of durability of proposed GGBFS-HCFA binder later.展开更多
To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 4...To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element.展开更多
Lime and Portland cement are the most widely used binders in soil stabilization projects.However,due to the high carbon emission in cement production,research on soil stabilization by the use of more environmentally-f...Lime and Portland cement are the most widely used binders in soil stabilization projects.However,due to the high carbon emission in cement production,research on soil stabilization by the use of more environmentally-friendly binders with lower carbon footprint has attracted much attention in recent years.This research investigated the potential of using alkali-activated ground granulated blast furnace slag(GGBS)and volcanic ash(VA)as green binders in clayey soil stabilization projects,which has not been studied before.The effects of different combinations of VA with GGBS,various liquid/solid ratios,different curing conditions,and different curing periods(i.e.7 d,28 d and 90 d)were investigated.Compressive strength and durability of specimens against wet-dry and freeze-thaw cycles were then studied through the use of mechanical and microstructural tests.The results demonstrated that the coexistence of GGBS and VA in geopolymerization process was more effective due to the synergic formation of N-A-S-H and C-(A)-S-H gels.Moreover,although VA needs heat curing to become activated and develop strength,its partial replacement with GGBS made the binder suitable for application at ambient temperature and resulted in a remarkably superior resistance against wet-dry and freeze-thaw cycles.The carbon embodied of the mixtures was also evaluated,and the results confirmed the low carbon footprints of the alkali-activated mixtures.Finally,it was concluded that the alkali-activated GGBS/VA could be promisingly used in clayey soil stabilization projects instead of conventional binders.展开更多
The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated. Ground blast furnace slag, coal fly...The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated. Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The re- placement of cement with 25% glass powder slightly decreases the strengthes at ? and 28 d, but shows no effect on 90 d's. Silica fume is very effective in improving both the strength and chloride penetration resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.展开更多
文摘Using seawater in concrete can be considered as one of the sustainable approaches in construction industry not only to save the freshwater resource but also to promote the use of abandoned seawater resource, especially in the construction at the uninhabited area close to the sea where the procurement of fresh water is difficult. In this study, durability against chloride attack of seawater mixed concrete with different replacement ratio of BFS (blast furnace slag) and FA (fly ash) is discussed and the life time until the occurrence of corrosion crack is evaluated. The results show that: (1) Chloride penetration rate of seawater mixed specimens with BFS and FA is lower than that of freshwater mixed OPC (ordinary Portland cement) specimens; (2) Oxygen permeability of seawater mixed specimens with BFS and FA is almost the same or lower than that of freshwater mixed OPC specimens; (3) Total life time (corrosion incubation period and propagation period) of seawater mixed specimens with BFS and FA is almost the same or only slightly shorter than that of freshwater mixed OPC specimens. From the results, it was confirmed that the usage of seawater in concrete mixing is feasible in concrete with the appropriate BFS and FA replacement ratio.
文摘This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.
文摘Composites are most promising materials of recent interest. Metal matrix composites (MMCs) possess significantly improved properties compared to unreinforced alloys. There has been an increasing interest in composites containing low density and low cost reinforcements. In view of the generation of large quantities of solid waste by products like fly ash and slags, the present expensive manner in which it is discarded, new methods for treating and using these solid wastes are required. Hence, composites with fly ash and granulated blast furnace (GBF) slag as reinforcements are likely to overcome the cost barrier for wide spread applications in automotive and small engine applications. In the present investigation, AA 2024 alloy-5 wt% fly ash and GBF slag composites separately were made by stir casting route. Phase identification and structural characterization were carried out on fly ash and GBF slag by X-ray diffraction studies. Scanning electron microscopy with energy dispersive X-ray spectroscopy EDS was used for microstructure analysis. The hardness and compression tests were carried out on all these alloy and composites. The SEM studies reveal that there was a uniform distribution of fly ash and GBF slag particles in the matrix phase and also very good bonding existed between the matrix and reinforcement. Improved hardness and mechanical properties were observed for both the composites compared to alloy;this increase is higher for Al-fly ash composite than Al-GBF slag composite.
文摘High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace slag (GGBFS). Substitution of 10% - 30% of GGBFS by HCFA and premixing of 1% - 3% Na2CO3 to this dry binary binder was discovered to give mortar compression strength of 10 - 30 to 30 - 45 MPa at 7 and 28 days when moist cured at ambient temperature. High-calcium fly ash produced from low-temperature combustion of fuel, like in circulating fluidized bed technology, reacts with water readily and is itself a good hardening activator for GGBFS, so introduction of Na<sub>2</sub>CO<sub>3</sub> into such mix has no noticeable effect on the mortar strength. However, low-temperature HCFA has higher water demand, and the strength of mortar is compromised by this factor. As of today, our research is still ongoing, and we expect to publish more data on different aspects of durability of proposed GGBFS-HCFA binder later.
文摘To provide basic data for the reasonable mixing design of the alkali-activated (AA) foamed concrete as a thermal insulation material for a floor heating system, 9 concrete mixes with a targeted dry density less than 400 kg/m3 were tested. Ground granulated blast-furnace slag (GGBS) as a source material was activated by the following two types of alkali activators: 10% Ca(OH)2 and 4% Mg(NO3)2, and 2.5% Ca(OH)2 and 6.5% Na2SiO3. The main test parameters were water-to-binder (W/B) ratio and the substitution level (RFA) of fly ash (FA) for GGBS. Test results revealed that the dry density of AA GGBS foamed concrete was independent of the W/B ratio an RFA, whereas the compressive strength increased with the decrease in W/B ratio and with the increase in RFA up to 15%, beyond which it decreased. With the increase in the W/B ratio, the amount of macro capillaries and artificial air pores increased, which resulted in the decrease of compressive strength. The magnitude of the environmental loads of the AA GGBS foamed concrete is independent of the W/B ratio and RFA. The largest reduction percentage was found in the photochemical oxidation potential, being more than 99%. The reduction percentage was 87% - 93% for the global warming potential, 81% - 84% for abiotic depletion, 79% - 84% for acidification potential, 77% - 85% for eutrophication potential, and 73% - 83% for human toxicity potential. Ultimately, this study proved that the developed AA GGBS foamed concrete has a considerable promise as a sustainable construction material for nonstructural element.
基金supported by Chem Concrete Pty.Ltd.Australia,Abadgaran Negin Jonoobshargh Company(ANJ Co.),Iran(Grant No.118/3C-1399)。
文摘Lime and Portland cement are the most widely used binders in soil stabilization projects.However,due to the high carbon emission in cement production,research on soil stabilization by the use of more environmentally-friendly binders with lower carbon footprint has attracted much attention in recent years.This research investigated the potential of using alkali-activated ground granulated blast furnace slag(GGBS)and volcanic ash(VA)as green binders in clayey soil stabilization projects,which has not been studied before.The effects of different combinations of VA with GGBS,various liquid/solid ratios,different curing conditions,and different curing periods(i.e.7 d,28 d and 90 d)were investigated.Compressive strength and durability of specimens against wet-dry and freeze-thaw cycles were then studied through the use of mechanical and microstructural tests.The results demonstrated that the coexistence of GGBS and VA in geopolymerization process was more effective due to the synergic formation of N-A-S-H and C-(A)-S-H gels.Moreover,although VA needs heat curing to become activated and develop strength,its partial replacement with GGBS made the binder suitable for application at ambient temperature and resulted in a remarkably superior resistance against wet-dry and freeze-thaw cycles.The carbon embodied of the mixtures was also evaluated,and the results confirmed the low carbon footprints of the alkali-activated mixtures.Finally,it was concluded that the alkali-activated GGBS/VA could be promisingly used in clayey soil stabilization projects instead of conventional binders.
文摘The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated. Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The re- placement of cement with 25% glass powder slightly decreases the strengthes at ? and 28 d, but shows no effect on 90 d's. Silica fume is very effective in improving both the strength and chloride penetration resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.