期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simulation of particle flow in a bell-less type charging system of a blast furnace using the discrete element method 被引量:18
1
作者 Jianliang Zhang Jiayong Qiu +4 位作者 Hongwei Guo Shan Ren Hui Sun Guangwei Wang Zhengkai Gao 《Particuology》 SCIE EI CAS CSCD 2014年第5期167-177,共11页
A three-dimensional model was established by the discrete element method (DEM) to analyze the flow and segregation of particles in a charging process in detail. The simulation results of the burden falling trajector... A three-dimensional model was established by the discrete element method (DEM) to analyze the flow and segregation of particles in a charging process in detail. The simulation results of the burden falling trajectory obtained by the model were compared with the industrial charging measurements to validate the applicability of the model. The flow behavior of particles from the weighing hopper to the top layer of a blast furnace and the heaping behavior were analyzed using this model. A radial segregation index (RSI) was used to evaluate the extent of the size segregation in the charging process. In addition, the influence of the chute inclination angle on the size segregation and burden profile during the charging process was investigated. 展开更多
关键词 Discrete element method blast furnace Bell-less charging system Granular flow Size segregation
原文传递
Analysis of gas-solid flow and shaft-injected gas distribution in an oxygen blast furnace using a discrete element method and computational fluid dynamics coupled model 被引量:3
2
作者 Zeshang Dong Jingsong Wang +2 位作者 Haibin Zuo Xuefeng She Qingguo Xue 《Particuology》 SCIE EI CAS CSCD 2017年第3期63-72,共10页
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b... lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center. 展开更多
关键词 Oxygen blast furnace Discrete element method Computational fluid dynamics Shaft gas injection Gas-solid flow Pressure field
原文传递
Linking discrete particle simulation to continuum process modelling for granular matter: Theory and application 被引量:2
3
作者 H.P. Zhu Z.Y. Zhou +1 位作者 Q.F. Hou A.B. Yu 《Particuology》 SCIE EI CAS CSCD 2011年第4期342-357,共16页
Two approaches are widely used to describe particle systems: the continuum approach at macroscopic scale and the discrete approach at particle scale. Each has its own advantages and disadvantages in the modelling of ... Two approaches are widely used to describe particle systems: the continuum approach at macroscopic scale and the discrete approach at particle scale. Each has its own advantages and disadvantages in the modelling of particle systems. It is of paramount significance to develop a theory to overcome the disadvantages of the two approaches. Averaging method to link the discrete to continuum approach is a potential technique to develop such a theory. This paper introduces an averaging method, including the theory and its application to the particle flow in a hopper and the particle-fluid flow in an ironmaking blast furnace. 展开更多
关键词 Particle flow Gas-solid flow Discrete approach Averaging method Hopper flow blast furnace
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部