期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
An isogeometric analysis approach for dynamic response of doubly-curved magneto electro elastic composite shallow shell subjected to blast loading
1
作者 Pham Hoang Tu Tran Van Ke +1 位作者 Vu Khac Trai Le Hoai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期159-180,共22页
For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak ... For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak foundation in a hygro-temperature environment. The doubly-curved MEE shallow shell types include spherical shallow shell, cylindrical shallow shell, saddle shallow shell, and elliptical shallow shell subjected to blast load are investigated. The Maxwell equation and electromagnetic boundary conditions are used to determine the vary of the electric and magnetic potentials. The MEE shallow shell's equations of motion are derived from Hamilton's principle and refined higher-order shear theory. Then, the IGA method is used to derive the laws of natural frequencies and dynamic responses of the shell under various boundary conditions. The accuracy of the model and method is verified through reliable numerical comparisons. Aside from this, the impact of the input parameters on the free and forced vibration of the doubly-curved MEE shallow shell is examined in detail. These results may be useful in the design and manufacture of military structures such as warships, fighter aircraft, drones and missiles. 展开更多
关键词 IGA approach Free and forced vibration Doubly-curved MEE shallow shell blast load
下载PDF
Sensitivity analysis and probability modelling of the structural response of a single-layer reticulated dome subjected to an external blast loading
2
作者 Shao-bo Qi Guang-yan Huang +1 位作者 Xu-dong Zhi Feng Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期152-163,共12页
The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predict... The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties.Therefore,the impact of the uncertainties associated with these input variables on the structures’response needs to be studied and quantified.In this study,a parametric uncertainty analysis was conducted first.Then,local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response.A probabilistic structural response model was established based on sensitive variables and a reasonable sample size.Furthermore,some deterministic empirical methods for explosion-resistance design,including the plane blast load model of CONWEP,the curved blast load model under the 50%assurance level,and the 20%mass-increased method,were used for evaluating their reliability.The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed.Evidently,the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability,but CONWEP did not;thus,the 1.2MB0.5 method can be used for making high-confidence simple predictions.In addition,the results indicated that the structural response is very sensitive to the explosion parameters.Based on these results,it is suggested that for explosion proofing,setting up a defensive barrier is more effective than structural strengthening. 展开更多
关键词 Dome structure blast load uncertainty Sensitivity analysis Probabilistic investigation Reliability evaluation
下载PDF
Capacity of surface warship's protective bulkhead subjected to blast loading 被引量:3
3
作者 彭兴宁 聂武 严波 《Journal of Marine Science and Application》 2009年第1期13-17,共5页
The protective bulkhead of the large surface warship need to be designed working in the membrane mode. In this paper, a formula is derived for calculating the plastic deformation of the protective bulkhead subjected t... The protective bulkhead of the large surface warship need to be designed working in the membrane mode. In this paper, a formula is derived for calculating the plastic deformation of the protective bulkhead subjected to blast loading by the energy method, and the ultimate capability of the protective bulkhead can be calculated. The design demand of the protective bulkhead is discussed. The calculation is compared with external experiments, which indicates that the formula is of great application value. 展开更多
关键词 protective bulkhead blast loading energy method
下载PDF
Strength and Toughness of Steel Fibre Reinforced Reactive Powder Concrete Under Blast Loading 被引量:3
4
作者 KUZNETSOV Valerian A REBENTROST Mark WASCHL John 《Transactions of Tianjin University》 EI CAS 2006年第B09期70-74,共5页
The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder c... The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack. The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared. A 0. 5 kg charge was detonated at a distance of 0. 1 m from the 1. 3 m × 1. 0 m × 0. 1 m (thick) panels, which were simply supported and spaning 1.3 m. Dynamic displacement measurements, high-speed video recording and visual examination of the panels for spall and breach were undertaken. The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels. Neither type of panel was breached using a O. 5 kg charge, The RC panel exhibited more spalling when Composition B was used. Under successive Composition B loading conditions, the RC panel was breached. In comparison the SFRPC panel was not breached. Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel. 展开更多
关键词 steel fibre reinforced reactive powder concrete blast loading SPALLING explosive blast loading
下载PDF
Numerical Modeling of Response and Damage of Masonry Walls to Blast Loading 被引量:6
5
作者 DEEKS Andrew 《Transactions of Tianjin University》 EI CAS 2006年第B09期132-137,共6页
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are govern... To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results. 展开更多
关键词 MASONRY blast loading FRAGMENTATION hazard level DAMAGE numerical modeling
下载PDF
Numerical Analysis of Dynamic Behavior of RC Slabs Under Blast Loading 被引量:5
6
作者 都浩 李忠献 《Transactions of Tianjin University》 EI CAS 2009年第1期61-64,共4页
In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the... In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the dynamic behavior of RC slabs under blast loading and its influencing factors are studied. The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software. Both the strain rate effect and the damage accumulation are taken into account in the material model. The dynamic responses of the RC slab subjected to blast loading are analyzed, and the influence of concrete strength, thickness and reinforcement ratio on the behavior of the RC slab under blast loading is numerically investigated. Based on the numerical results, some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading. 展开更多
关键词 blast loading reinforced concrete slab dynamic behavior numerical analysis
下载PDF
Analysis on Dynamic Response of Hard-Soft-Hard Sandwich Panel Under Blast Loading 被引量:2
7
作者 DONG Yongxiang FENG Shunshan JIN Jun 《Transactions of Tianjin University》 EI CAS 2006年第B09期233-237,共5页
Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading. Experimental results have shown that there are four damage modes, i... Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading. Experimental results have shown that there are four damage modes, including explosion cratering, scabbing of the backside, radial cracking induced failure and circumferential cracking induced failure. It also illustrates that the foam material sandwiched in the multi-layered media has an important effect on damage patterns. The phenomena encountered have been analyzed by the calculation with ALE method. Meanwhile, the optimal analysis of foam material thickness and position in the sandwich panel were performed in terms of experimental and numerical analysis. The proper thickness proportion of the soft layer is about 2.0% to the thickness of sandwich panel and the thickness of the upper hard layer and lower hard layer is in the ratio of ? to 3 under the condition in this paper when the total thickness of soft layer remains constant. 展开更多
关键词 dynamic response sandwich panel blast loading foam material
下载PDF
Rate-Sensitive Numerical Analysis of Dynamic Responses of Arched Blast Doors Subjected to Blast Loading 被引量:2
8
作者 陈力 方秦 +1 位作者 章毅 张亚栋 《Transactions of Tianjin University》 EI CAS 2008年第5期348-352,共5页
Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have consi... Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have considerable influence on the response of blast doors subjected to blast loading. In this paper, the dynamic responses of a reinforced concrete arched blast door under blast loading were analyzed by the finite element program ABAQUS, combined with a previously developed elasto-viscoplastic rate-sensitive material model. And the effect of the surrounding rock mass and contact effect of the doorframe were also taken into account in the simulation. It is demonstrated that the strain-rate effect has considerable influence on the response of reinforced concrete blast door subjected to blast loading and must be taken into account in the analysis. 展开更多
关键词 arched blast door strain rate blast loading dynamic response
下载PDF
Numerical Simulation of Dynamic Response of an Existing Subway Station Subjected to Internal Blast Loading 被引量:2
9
作者 胡秋韵 禹海涛 袁勇 《Transactions of Tianjin University》 EI CAS 2008年第B10期563-568,共6页
In order to design and retrofit a subway station to resist an internal blast, the distribution of blast loading and its effects on structures should be investigated firstly. In this paper, the behavior of a typical su... In order to design and retrofit a subway station to resist an internal blast, the distribution of blast loading and its effects on structures should be investigated firstly. In this paper, the behavior of a typical subway station subjected to different internal blast Ioadings was analyzed. It briefly introduced the geometric characteristics and material constitutive model of an existing two-layer and three-span frame subway station. Then three cases of different explosive charges were consid- ered to analyze the dynamic responses of the structure. Finally, the maximum principal stress, dis- placement and velocity of the columns in the three cases were obtained and discussed. It con- cluded that the responses of the columns are sensitive to the charge of explosive and the distance from the detonation. It's also found that the stairs between the two layers have significant effects on the distribution of the maximum principal stress of the columns in the upper layer. The explicit dynamic nonlinear finite element software ANSYS/LS-DYNA was used in this study. 展开更多
关键词 internal blast loading subway station numerical analysis dynamic response
下载PDF
Numerical Calculation of Concrete Slab Response to Blast Loading 被引量:1
10
作者 ZHOU Xiaoqing HAO Hong +1 位作者 KUZNETSOV Valerian A WASCHL John 《Transactions of Tianjin University》 EI CAS 2006年第B09期94-99,共6页
In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concre... In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concrete slab is considered in 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab, then the results obtained from 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. Numerical results of the concrete slab response are compared with the explosive test carried out- in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia. 展开更多
关键词 blast loading DAMAGE CONCRETE 3 D simulation
下载PDF
Numerical Simulation of the Flat Ribbon Wound Explosion Containment Vessels Subjected to Internal Blast Loading
11
作者 SONG Yanze LI Zhiqiang +1 位作者 ZHAO Longmao ZHENG Jinyang 《Transactions of Tianjin University》 EI CAS 2006年第B09期223-227,共5页
In order to constitute engineering design methods of the flat ribbon wound explosion containment vessels, the dynamic response of such vessels subjected to internal explosion loading is simulated using LS-DYNA3D. Thre... In order to constitute engineering design methods of the flat ribbon wound explosion containment vessels, the dynamic response of such vessels subjected to internal explosion loading is simulated using LS-DYNA3D. Three winding angles, 10°, 15°and 20°, are considered. It is shown that among ribbon vessels investigated, the center displacement of outermost ribbons of the vessel with 10°winding angle is the smallest under the same blast loading. The response of vessels loaded in inner core is local. From the center of the cylindrical shell to the bottom cover, the maximum strain gradually decreases. The ribbons are subjected to tension in the length direction and compression in the width direction. Blasting shock energy concentrates on where is close to center section of blasting. For comparison, numerical simulation of a monobloc thick-walled explosion containment vessel is also investigated. It can be found that the biggest deformation of the flat ribbon wound explosion containment vessels is bigger than that of the monobloc thick-walled explosion containment vessel in the center section of blasting under the same TNT. Numerical results are approximately in agreement with experimental ones. It is proved that the ribbon vessels have the valuable properties of ' leak before burst at worst' compared with the monobloc vessels through numerical simulation. 展开更多
关键词 flat ribbon wound explosion containment vessels blast loading dynamic response numerical simulation
下载PDF
Pressure-impulse diagram with multiple failure modes of one-way reinforced concrete slab under blast loading using SDOF method 被引量:9
12
作者 汪维 张舵 +2 位作者 卢芳云 汤福静 王松川 《Journal of Central South University》 SCIE EI CAS 2013年第2期510-519,共10页
Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that ... Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that the SDOF systems are accurate in predicting the failure mode of the slab under blast loads by incorporating the effects of the strain rate effect caused by rapid load application. Based on different damage criteria, pressure-impulse (P-I) diagrams of the two failure modes were analyzed with the SDOF systems. The effects of span length, concrete strength, and reinforcement ratio of the slab on the P-I diagram were also investigated. Results indicate that a slab tends to fail in direct shear mode when it is of a smaller span length and tends to fail in flexure mode when it is of a larger span length. With the increase of the concrete strength or reinforced ratio, both the flexure and shear capacity increase. Based on numerical results, a simplified method and a semi analytical equation for deriving the P-I diagram are proposed for different failure modes and damage levels. 展开更多
关键词 blast load failure mode pressure impulse diagram One-way reinforced concrete slab single degree of freedom
下载PDF
Responses of HFR-LWC beams under close-range blast loadings accompanying membrane action 被引量:1
13
作者 Wan-xiang Chen Li-sheng Luo +1 位作者 Zhi-kun Guo Peng Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1167-1187,共21页
The load-carrying capacities and failure patterns of reinforced concrete components can be significantly changed by membrane effects.However,limited work has been carried out to investigate the blast resistance of Hyb... The load-carrying capacities and failure patterns of reinforced concrete components can be significantly changed by membrane effects.However,limited work has been carried out to investigate the blast resistance of Hybrid Fiber Reinforced Lightweight Aggregate Concrete(HFR-LWC)members accompanying membrane action.This paper presents a theoretical approach to quantitatively depicting the membrane behavior and its contribution on the behavior of HFR-LWC beams under close-range blast loadings,and the suitability of the proposed model is validated by a series of field tests.An improved Single-Degree-of-Freedom(SDOF)model was employed to describe the dynamic responses of beam-like members under blast loadings accompanying membrane action,where the mass-load coefficient is determined according to the nonuniformly distributed load induced by close-range explosion,and the membrane action is characterized by an in-plane(longitudinal)force and a resisting moment.The elastoplastic and recovery responses of HFR-LWC beams under the combined action of blast load and membrane force were analyzed by the promoted model.A specially built end-constrain clamp was developed to provide membrane action for the beam member when they are subjected to blast load simultaneously.It is demonstrated that the analytical displacement-time histories are in good agreement with experimental results before peak deflections and that the improved SDOF model is an acceptable tool for predicting the behavior of HFR-LWC beams under blast loadings accompanying membrane action. 展开更多
关键词 blast load Membrane action HFR-LWC beam Dynamic response Experimental study
下载PDF
Numerical damage evaluation of perforated steel columns subjected to blast loading
14
作者 Mahmoud T.Nawar Ibrahim T.Arafa Osama M.Elhosseiny 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期735-746,共12页
The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not ... The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not only related to initial deformation response during the blast but also the residual axial load capacity and it can be considered as a reliable index after the blast effects.Therefore,the PSCs damages will be studied in two stages;direct and post blast effects.In the present study,the dynamic response of PSCs was numerically evaluated under different levels of blast threats using LS-DYNA software.Extensive explicit finite element(FE)analyses are carried out to investigate the effect of various parameters,such as web opening shapes,boundary conditions and strengthening details on the damage index and toughness of the PSCs compared to the parent steel sections.The results of the comparative study show that the damage and toughness decrease when the support condition changes from pinned to fixed ends through the two stages of loadings.PSCs give high toughness compared to its parent sections during blast shock stage while,a remarkable decrease in toughness is observed during the application of axial gravity after blast shock.Furthermore,the web opening shapes have slight effects on the global dynamic behavior of PSCs,particularly in terms of residual capacity.On the contrary,the retrofitting strategy using both closed holes at end and vertical stiffeners have an effective enhancement to get higher toughness in case of the extreme blasts. 展开更多
关键词 Perforated steel columns blast load Damage criterion Numerical modeling Explicit finite element analysis Web-opening shapes
下载PDF
Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study
15
作者 Farman Saifi Mohd Javaid +1 位作者 Abid Haleem S.M.Anas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2747-2777,共31页
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac... Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events. 展开更多
关键词 blast loading computational fluid dynamics computer modeling pipe networks response prediction structural safety
下载PDF
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
16
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 blast load Modified first-order shear theory Biological composite structures
下载PDF
Blast waveform tailoring using controlled venting in blast simulators and shock tubes
17
作者 Edward Chern Jinn Gan Alex Remennikov David Ritzel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期14-26,共13页
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra... A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied. 展开更多
关键词 Advanced blast simulator Shock wave propagation Far-field explosion blast loads blast waves Computational fluid dynamics
下载PDF
Determination method of mesh size for numerical simulation of blast load in near-ground detonation
18
作者 Doudou Si Zuanfeng Pan Haipeng Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期111-125,共15页
In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommend... In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN. 展开更多
关键词 blast load Mesh size effect Numerical simulation Scaled mesh size VERIFICATION
下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
19
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 blast load Two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
下载PDF
Experiment and Numerical Simulation on the Dynamic Response of Foam-Filled Tubes Under Lateral Blast Loading 被引量:2
20
作者 Zhifang Liu Tianhui Zhang +2 位作者 Shiqiang Li Jianyin Lei Zhihua Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第6期937-953,共17页
The dynamic response and energy absorption performance of foam-filled tubes under lateral external blast loading were investigated experimentally and numerically.A series of blast tests for the foam-filled tubes with ... The dynamic response and energy absorption performance of foam-filled tubes under lateral external blast loading were investigated experimentally and numerically.A series of blast tests for the foam-filled tubes with different geometric parameters were carried out by the use of the ballistic pendulum system.Experimental results were compared with the numerical simulation results employing the software ABAQUS.The results showed that the finite element(FE)analysis was in good agreement with the experimental data.The effects of the diameter and wall thickness of the outer tube,the TNT explosive charge mass,and the standoff distance on the deformation modes,the blast resistance,and the energy absorption performance of the foam-filled tubes were investigated.Three deformation modes of the foam-filled tubes were observed under the lateral external blast loading,including local plastic deformation,large plastic deformation with an elliptic shape,and the tearing of the outer tube.The result revealed that the introduction of the foam core played a vital role in the deflection and energy absorption capacity of the structure.This study provided effective guidelines for designing foam-filled tubes with high energy absorption efficiency. 展开更多
关键词 Foam-filled tubes Aluminum foam Lateral blast loading Numerical simulation
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部