期刊文献+
共找到25,859篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites 被引量:3
1
作者 XU Gang HE Xingyang HE Yabo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1186-1192,共7页
Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechan... Reuse of solid industrial wastes is an effective approach to develop low-carbon construction materials. This paper examines how two materials, steel slag(ST) and granulated blast-furnace slag(SL) impact the mechanical performance and pore structure of cement-based systems. Analysis was done on the variations of the porosity, pore size, and pore volume distribution with the curing age and replacement content, and the fractal dimensions of pore surfaces. The results suggested that systems with both supplementary materials had lower early strengths than pure cement, but could generally surpass pure cement paste after 90 d; higher SL content was particularly helpful for boosting the late strengths. The addition of ST increased the porosities and mean pore sizes at each age, and both increased with ST content; SL was helpful for decreasing the system's late porosity(especially harmless pores below 20 nm); The lowest porosity and mean pore size were obtained with 20% SL. Both systems had notably fractal characteristics on pore surfaces, with ST systems showing the highest dimensions at 10% ST, and SL systems at 20% SL. Compressive strength displayed a significant linear increase with fractal dimension. 展开更多
关键词 steel slag granulated blast-furnace slag mechanical performance pore structure fractal dimension
下载PDF
Influence of Carbonation on Fatigue of Concrete with High Volume of Ground Granulated Blast-furnace Slag 被引量:1
2
作者 游渌棽 蒋林华 CHU Hongqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期361-368,共8页
The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonatio... The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonation depth and compressive strength was analyzed and an equation between carbonation depth and compressive strength was put forward. Meanwhile, fatigue S-N curves of various carbonation depths were fitted, and the infl uence of carbonation on fatigue life and strength was studied. Carbonation has a dual effect on the fatigue behavior of GGBS-concrete. A fatigue equation based on the depth of carbonation was established. Also, the probabilistic distribution of fatigue life of carbonated concrete at a given stress level was modeled by the two-parameter Weibull distribution. 展开更多
关键词 ground granulated blast-furnace slag concrete fatigue carbonation
下载PDF
Nondestructive Microstructure Analysis of the Carbonation Evolution Process in Hardened Binder Paste Containing Blast-furnace Slag by X-ray CT 被引量:1
3
作者 韩建德 孙伟 PAN Ganghua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期955-962,共8页
We used micro-XCT(X-ray computed tomography) to in-situ investigate the microstructure evolution of hardened binder paste containing different contents (0%, 30%, 50% and 70%) of blast-furnace slag at different car... We used micro-XCT(X-ray computed tomography) to in-situ investigate the microstructure evolution of hardened binder paste containing different contents (0%, 30%, 50% and 70%) of blast-furnace slag at different carbonation time (O, 3, 7 and 14 days), respectively. The carbonation front shape, the degrees of carbonation and cracks spatial distribution were studied for hardened binder paste containing BFS. In addition, the porosity and pore volume distribution of macro-pore were measured at different carbonation ages. The results reveal that the degree of carbonation at different times can be measured by the volume fraction of the uncarbonated and carbonated parts. 展开更多
关键词 XCT hardened binder paste blast furnace slag CARBONATION gray values pore structure
下载PDF
Volume and Surface Nucleation of Crystals in Glass Based on Blast-Furnace Slag
4
作者 Galina A. Sycheva 《Journal of Crystallization Process and Technology》 2017年第2期11-47,共37页
Using differential thermal analysis, X-ray phase analysis, electron microscopy, and optical microscopy, the nucleation of crystals in glass obtained by blending metallurgical slag with silicon dioxide has been studied... Using differential thermal analysis, X-ray phase analysis, electron microscopy, and optical microscopy, the nucleation of crystals in glass obtained by blending metallurgical slag with silicon dioxide has been studied. The type of crystallization (homogeneous or heterogeneous, volume or surface) is revealed for each of nine compositions of synthesized glass. It is shown that the first crystalline phase in a volume crystallizing glass is perovskite (CaO·TiO2);in this phase a nucleation of the main phase occurs: melilite (solid solution of gehlenite 2CaO·Al2O3·SiO2 in akermanite 2CaO·MgO·2SiO2). The fundamental characteristics of homogeneous (for a catalizing phase, perovskite) and heterogeneous (for a catalyzed phase, melilite) of crystallization are determined: the steady state nucleation rate Ist, time of unsteady state nucleation τ, crystal growth rate U, and activation energy of frictional flow. The temperature dependences of Ist, τ, and U are obtained. The kinetics of the crystallization of glass is studied and the rates of the surface crystal growth are determined in the glass of nine compositions. The influence of grinding the particles of the original glass on the sequence of deposition of the crystalline phases was studied. Practical recommendations are presented for the use of blast-furnace slag as a raw material for the synthesis of glass and their further utilization. 展开更多
关键词 GLASS Based on blast-furnace slag VOLUME NUCLEATION Catalyzed VOLUME NUCLEATION SURFACE Crystal Growth and NUCLEATION
下载PDF
Effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on chloride migration through concrete subjected to repeated loading 被引量:3
5
作者 ZHANG WuMan BA HengJing 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第11期3102-3108,共7页
The effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on the chloride migration through concrete subjected to repeated loading was examined.Portland cement was replaced by 20%,30%,40% GGBFS and... The effect of ground granulated blast-furnace slag(GGBFS) and silica fume(SF) on the chloride migration through concrete subjected to repeated loading was examined.Portland cement was replaced by 20%,30%,40% GGBFS and 5%,10% SF,respectively.Five times repeated loadings were applied to specimens,the maximum loadings were 40% and 80% of the axial cylinder compressive strength(f′c),respectively.Chloride migration through concretes was evaluated using the rapid chloride migration test and the chloride concentration in the anode chamber was measured.The results indicate that the transport number of chloride through concrete containing 20% and 30% GGBFS replacements and 5% and 10% SF replacements is lower than that of the control concrete,but 40% GGBFS replacement increases the transport number of chloride.Five loadings at 40% f′cor 80% f′c increase the transport number of chloride for all mixes investigated in this study.5% SF replacement has a very close effect on the chloride permeability of concrete with 20% GGBFS when concrete is subjected to 40% f′cor 80% f′c. 展开更多
关键词 CONCRETE ground granulated blast-furnace slag (GGBFS) silica fume (SF) chloride migration repeated loading
原文传递
Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth 被引量:1
6
作者 Yan-xiang Liu Jian-liang Zhang +3 位作者 Zhi-yu Wang Ke-xin Jiao Guo-hua Zhang Kuo-chih Chou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第2期130-138,共9页
To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carded out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature o... To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carded out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt% . Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs be- tween the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron. 展开更多
关键词 blast furnace slag titanium dioxide packed beds DRIPPING
下载PDF
Crystallization behavior of blast-furnace slag by single hot thermocouple technique
7
作者 Tie-lei Tian Shuang Cai +1 位作者 Yu-zhu Zhang Hong-wei Xing 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第3期259-265,共7页
The crystallization behavior of blast-furnace slag under isothermal and continuous-cooling conditions was studied using the single hot thermocouple technique.The crystallization phases were obtained using FactSage sof... The crystallization behavior of blast-furnace slag under isothermal and continuous-cooling conditions was studied using the single hot thermocouple technique.The crystallization phases were obtained using FactSage software and X-ray diffractometry.The crystallization kinetic parameters were calculated by combining these results with the Johnson-Mehl—Avrami model.Under isothermal conditions,the shortest crystallization incubation time was 24 and 18 s when the temperatures were 1300 and 1150℃,and the corresponding critical cooling rates were 4.5 and 14.3℃/s,respectively.At 1270℃,the slag was difficult to crystallize and the fiber-forming rate improved.When the continuous-cooling rate was 6.5℃/s,the slag solidified into a glassy state.The main crystallization phases,gehlenite,akermanite,anorthite,and melangite,were most easily precipitated.The growth factors of melangite and anorthite were approximately 1.63 and 1.68,respectively,which indicated that the crystals nucleated on the surface and grew in two dimensions. 展开更多
关键词 blast-furnace slag COOLING rate CRYSTALLIZATION Single HOT THERMOCOUPLE technique
原文传递
Dry Mix Slag—High-Calcium Fly Ash Binder. Part Two: Durability
8
作者 Alexey Brykov Mikhail Voronkov 《Materials Sciences and Applications》 2024年第3期37-51,共15页
This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>... This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254. 展开更多
关键词 Ground Granulated blast-furnace slag High-Calcium Fly-Ash Sodium Car-bonate blast-furnace slag Binder DURABILITY ASR Sulfate Attack SOUNDNESS EFFLORESCENCE
下载PDF
Dredged marine soil stabilization using magnesia cement augmented with biochar/slag
9
作者 Chikezie Chimere Onyekwena Qi Li +5 位作者 Yong Wang Ishrat Hameed Alvi Wentao Li Yunlu Hou Xianwei Zhang Min Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1000-1017,共18页
Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materia... Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs. 展开更多
关键词 Dredged marine soil CO_(2)uptake Reactive magnesia BIOCHAR Ground granulated blast-furnace slag
下载PDF
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag 被引量:2
10
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag SPINEL CHROMIUM waste remediation ferrous oxide
下载PDF
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:6
11
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Effect of electrical parameters and slag system on macrostructure of electroslag ingot 被引量:1
12
作者 Bing-jie Wang Yu Wang +3 位作者 Meng-jun Wang Lei Zhao Li-zhong Chang Xiao-fang Shi 《China Foundry》 SCIE EI CAS CSCD 2024年第1期44-50,共7页
To investigate the influence of electric parameters and slag system on the solidification quality of electroslag ingot during electroslag remelting,different power supply modes,current strengths and remelting slag sys... To investigate the influence of electric parameters and slag system on the solidification quality of electroslag ingot during electroslag remelting,different power supply modes,current strengths and remelting slag systems were used to conduct electroslag remelting experiments on 304L austenitic stainless steel,and the macrostructure of electroslag ingots was analyzed.The results indicate that the depth of the metal pool decreases with the reduction of remelting frequency in the low frequency power supply mode.The effects of different power supply modes,such as low-frequency,direct current straight polarity(DCSP),and direct current reverse polarity(DCRP),on reducing the depth of the metal pool increase in that order.By reducing the remelting current strength in the same power supply mode,the depth of metal pool is reduced.When compared to the binary slag system of 70%CaF2+30%Al2O3,the ternary slag system of 60%CaF2+20%Al2O3+20%CaO is more effective in reducing the depth of the metal pool during remelting.Utilizing the 60%CaF2+20%Al2O3+20%CaO ternary slag system results in a shallower and flatter metal pool,with columnar crystal growth occurring closer to the axial crystal.This effect is observed for both low frequency and direct current(DC)power supply modes. 展开更多
关键词 electroslag remelting FREQUENCY slag system solidification quality
下载PDF
Dry Mix Slag—High-Calcium Fly Ash Binder. Part One: Hydration and Mechanical Properties
13
作者 Alexey Brykov Mikhail Voronkov 《Materials Sciences and Applications》 2023年第3期240-254,共15页
High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace sla... High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace slag (GGBFS). Substitution of 10% - 30% of GGBFS by HCFA and premixing of 1% - 3% Na2CO3 to this dry binary binder was discovered to give mortar compression strength of 10 - 30 to 30 - 45 MPa at 7 and 28 days when moist cured at ambient temperature. High-calcium fly ash produced from low-temperature combustion of fuel, like in circulating fluidized bed technology, reacts with water readily and is itself a good hardening activator for GGBFS, so introduction of Na<sub>2</sub>CO<sub>3</sub> into such mix has no noticeable effect on the mortar strength. However, low-temperature HCFA has higher water demand, and the strength of mortar is compromised by this factor. As of today, our research is still ongoing, and we expect to publish more data on different aspects of durability of proposed GGBFS-HCFA binder later. 展开更多
关键词 Ground Granulated blast-furnace slag blast-furnace slag Activation High-Calcium Fly-Ash Sodium Carbonate blast-furnace slag Binder
下载PDF
Interphase migration and enrichment of lead and zinc during copper slag depletion
14
作者 Jun HAO Zhi-he DOU +2 位作者 Xing-yuan WAN Ting-an ZHANG Kun WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期3029-3041,共13页
An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula... An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase. 展开更多
关键词 depletion LEAD copper slag STIRRING ZINC
下载PDF
Corrosion behavior of co-gasification slag of furfural residue and coal on alumina-silica refractories
15
作者 MA Xiaotong WANG Zhigang +8 位作者 LU Hao LIU Wei WANG Yanxia ZHAO Jiangshan SUN Lingmin YAN Jingchong ZHUANG Shujuan LI Huaizhu KONG Lingxue 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第10期1387-1397,共11页
Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coal... Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coals with different silica alumina ratio and a furfural residue were selected in the study.The effects of furfural residue additions on corrosion of silica brick,corundum brick,high alumina brick and mullite brick were investigated by using XRD,SEM-EDS and Factsage Software,and the corrosion mechanism was analyzed.With increasing furfural residue addition,the permeability of the slags to high-aluminium-bearing refractories first decreases and then increases,while the permeability on silica brick shows a slight decrease trend.Leucite(KAlSi_(2)O_(6))with high-melting temperature is generated from the reaction of K_(2)O and SiO_(2)in slag with Al_(2)O_(3)in refractories after furfural residue is added,which hinders the infiltration of slag in refractories.Kaliophilite(KAlSiO_(4))of low-melting point is formed when K_(2)O content increases,and this contributes to the infiltration of slag in refractories.The acid-base reaction between slag and silica brick is distinctly occurred,more slag reacts with SiO_(2)in the silicon brick,resulting in a decrease in the amount of slag infiltrating into the silicon brick as furfural residue is added.The corrosion of silica brick is mainly caused by the acid-base reaction,while the corrosion of three alumina based refractory bricks of corundum,mullite and high alumina brick is determined by slag infiltration.A linear correlation between the percolation rate and slag viscosity is established,the slag permeability increases with decreasing viscosity,resulting in stronger permeability for the high Si/Al ratio slag with lower viscosity. 展开更多
关键词 furfural residue CO-GASIFICATION slag REFRACTORY corrosion
下载PDF
Detection of Al, Mg, Ca, and Zn in copper slag by LIBS combined with calibration curve and PLSR methods
16
作者 贾军伟 刘志峰 +1 位作者 潘从元 薛骅骎 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期132-138,共7页
The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was... The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy(LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m. The composition of copper slag was then analyzed using both the calibration curve(CC) method and the partial least squares regression(PLSR) analysis method based on the characteristic spectral intensity ratio. The performance of the two analysis methods was gauged through the determination coefficient(R^(2)), average relative error(ARE), root mean square error of calibration(RMSEC), and root mean square error of prediction(RMSEP). The results demonstrate that the PLSR method significantly improved both R^(2) for the calibration and test sets while reducing ARE, RMSEC, and RMSEP by 50% compared to the CC method. The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag. 展开更多
关键词 copper slag ELEMENT REMOTE LIBS PLSR
下载PDF
Phase equilibria relations in the V_(2)O_(5)-rich part of the Fe_(2)O_(3-)TiO_(2)-V_(2)O_(5) system at 1200℃ related to converter vanadium-bearing slag
17
作者 Junjie Shi Yumo Zhai +6 位作者 Yuchao Qiu Changle Hou Jingjing Dong Maoxi Yao Haolun Li Yongrong Zhou Jianzhong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2017-2024,共8页
The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy.The key to developing novel processes and improving traditional routes li... The efficient recycling of vanadium from converter vanadium-bearing slag is highly significant for sustainable development and circular economy.The key to developing novel processes and improving traditional routes lies in the thermodynamic data.In this study,the equilibrium phase relations for the Fe_(2)O_(3)-TiO_(2)-V_(2)O_(5)system at 1200℃in air were investigated using a high-temperature equilibrium-quenching technique,followed by analysis using scanning electron microscopy-energy dispersive X-ray spectrometer and X-ray photoelectron spectroscopy.One liquid-phase region,two two-phase regions(liquid-rutile and liquid-ferropseudobrookite),and one three-phase region(liquid-rutile-ferropseudobrookite)were determined.The variation in the TiO_(2)and V_(2)O_(5)contents with the Fe_(2)O_(3)content was examined for rutile and ferropseudobrookite solid solutions.However,on further comparison with the predictions of FactSage 8.1,significant discrepancies were identified,highlighting that greater attention must be paid to updating the current thermodynamic database related to vanadium-bearing slag systems. 展开更多
关键词 vanadium-bearing slag thermodynamics FactSage phase equilibria recovery
下载PDF
Breaking the Fe_(3)O_(4)-wrapped copper microstructure to enhance copper-slag separation
18
作者 Xiaopeng Chi Haoyu Liu +4 位作者 Jun Xia Hang Chen Xiangtao Yu Wei Weng Shuiping Zhong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2312-2325,共14页
The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of c... The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag. 展开更多
关键词 pyrometallurgical smelting process slag cleaning reductants copper matte
下载PDF
Copper slag assisted coke reduction of phosphogypsum for sulphur dioxide preparation
19
作者 Dong Ma Qinhui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期43-53,共11页
The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains... The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed. 展开更多
关键词 PHOSPHOGYPSUM Sulfur dioxide Copper slag FLUIDIZED-BED REDUCTION Waste treatment
下载PDF
Multiscale analysis of fine slag from pulverized coal gasification in entrained-flow bed
20
作者 Lirui Mao Mingdong Zheng +5 位作者 Baoliang Xia Facun Jiao Tao Liu Yuanchun Zhang Shengtao Gao Hanxu Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期119-132,共14页
Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restri... Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future. 展开更多
关键词 Coal gasification Fine slag Multiscale analysis Carbon components Inorganic components
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部