期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Prediction of blast boulders in open pit mines via multiple regression and artificial neural networks 被引量:5
1
作者 Ghiasi Majid Askarnejad Nematollah +1 位作者 Dindarloo Saeid R. Shamsoddini Hamed 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期183-184,共2页
The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boul... The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively. 展开更多
关键词 Blast boulder Artificial neural networks Multiple regression Golegohar iron ore mine
下载PDF
Prediction of blast-induced flyrock in Indian limestone mines using neural networks 被引量:9
2
作者 R.Trivedi T.N.Singh A.K.Raina 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期447-454,共8页
Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has chal... Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Artificial neural network(ANN) blasting Opencast mining Burden Stemming Specific charge Flyrock
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部