利用经典的Zeng分解方法,并结合Bleimann-Butzer and Hahn算子基函数的界,讨论了Bleimann-Butzer and Hahn-Bézier算子在0<α<1时对一般有界函数的逼近,得到比较好的收敛阶估计,所得结果拓展了在α≥1时对有界变差函数逼近...利用经典的Zeng分解方法,并结合Bleimann-Butzer and Hahn算子基函数的界,讨论了Bleimann-Butzer and Hahn-Bézier算子在0<α<1时对一般有界函数的逼近,得到比较好的收敛阶估计,所得结果拓展了在α≥1时对有界变差函数逼近的研究工作.展开更多