In the current state-of-the-art,high-loss flow in the endwall significantly influences compressor performance.Therefore,the control of endwall corner separation in compressor blade rows is important to consider.Based ...In the current state-of-the-art,high-loss flow in the endwall significantly influences compressor performance.Therefore,the control of endwall corner separation in compressor blade rows is important to consider.Based on the previous research of the Blended Blade and End Wall(BBEW)technique,which can significantly reduce corner separation,in combination with a nonaxisymmetric endwall,the full-BBEW technique is proposed in this study to further reduce the separation in endwall region.The principle of the unchanged axial passage area is considered to derive the geometric method for this technique.Three models are further classified based on different geometric characteristics of this technique:the BBEW model,Inclining-Only End Wall(IOEW)model,and full-BBEW model.The most effective design of each model is then found by performing several optimizations at the design point and related numerical investigations over the entire operational conditions.Compared with the prototype,the total pressure loss coefficient decreases by 7%–9%in the optimized full-BBEW at the design point.Moreover,the aerodynamic blockage coefficient over the entire operational range decreases more than the other models,which shows its positive effect for diffusion.This approach has a larger decrease at negative incidence angles where the intersection of the boundary layer plays an important role in corner separation.The analysis shows that the blended blade profile enlarges the dihedral angle and creates a span-wise pressure gradient to move low momentum fluid towards the mainstream.Furthermore,the inclining hub geometry accelerates the accumulated flow in the corner downstream by increasing the pressure gradient.Overall,though losses in the mainstream grow,especially for large incidences,the full-BBEW technique effectively reduces the separation in corners.展开更多
为解决燃气轮机涡轮在端区二次流动造成的流动损失,对叶身/端壁融合(Blended Blade and End Wall, BBEW)技术在涡轮气动优化中的有效性进行研究,以E3模型高压涡轮第一级叶栅为研究对象,对涡轮叶片吸力面下端壁进行不同形式的叶身/端壁...为解决燃气轮机涡轮在端区二次流动造成的流动损失,对叶身/端壁融合(Blended Blade and End Wall, BBEW)技术在涡轮气动优化中的有效性进行研究,以E3模型高压涡轮第一级叶栅为研究对象,对涡轮叶片吸力面下端壁进行不同形式的叶身/端壁融合造型。设置入口总温为709 K,总压为344.74 kPa。通过数值模拟研究叶身/端壁融合技术在降低端壁气动损失及提高涡轮级效率和做功能力方面的贡献。研究结果表明:融合技术的应用能够有效减少端区局部流动损失,提升涡轮级做功能力,但同时会增加最大融合圆角半径位置处的流动损失;当静叶最大融合圆角相对半径和相对轴向弦长位置分别为0.16和0.47时,涡轮得到最佳的整体提升效果,此时等熵效率提高了0.010%,比功率提升了0.141%。展开更多
基金sponsored by the National Natural Science Foundation of China(Nos.51676015 and 51976010)National Major Science and Technology Project of China(Nos.2017-II0006-0020 and 2017-II-0001-0013)Beijing Institute of Technology Research Fund Program for Young Scholars,China。
文摘In the current state-of-the-art,high-loss flow in the endwall significantly influences compressor performance.Therefore,the control of endwall corner separation in compressor blade rows is important to consider.Based on the previous research of the Blended Blade and End Wall(BBEW)technique,which can significantly reduce corner separation,in combination with a nonaxisymmetric endwall,the full-BBEW technique is proposed in this study to further reduce the separation in endwall region.The principle of the unchanged axial passage area is considered to derive the geometric method for this technique.Three models are further classified based on different geometric characteristics of this technique:the BBEW model,Inclining-Only End Wall(IOEW)model,and full-BBEW model.The most effective design of each model is then found by performing several optimizations at the design point and related numerical investigations over the entire operational conditions.Compared with the prototype,the total pressure loss coefficient decreases by 7%–9%in the optimized full-BBEW at the design point.Moreover,the aerodynamic blockage coefficient over the entire operational range decreases more than the other models,which shows its positive effect for diffusion.This approach has a larger decrease at negative incidence angles where the intersection of the boundary layer plays an important role in corner separation.The analysis shows that the blended blade profile enlarges the dihedral angle and creates a span-wise pressure gradient to move low momentum fluid towards the mainstream.Furthermore,the inclining hub geometry accelerates the accumulated flow in the corner downstream by increasing the pressure gradient.Overall,though losses in the mainstream grow,especially for large incidences,the full-BBEW technique effectively reduces the separation in corners.
文摘为解决燃气轮机涡轮在端区二次流动造成的流动损失,对叶身/端壁融合(Blended Blade and End Wall, BBEW)技术在涡轮气动优化中的有效性进行研究,以E3模型高压涡轮第一级叶栅为研究对象,对涡轮叶片吸力面下端壁进行不同形式的叶身/端壁融合造型。设置入口总温为709 K,总压为344.74 kPa。通过数值模拟研究叶身/端壁融合技术在降低端壁气动损失及提高涡轮级效率和做功能力方面的贡献。研究结果表明:融合技术的应用能够有效减少端区局部流动损失,提升涡轮级做功能力,但同时会增加最大融合圆角半径位置处的流动损失;当静叶最大融合圆角相对半径和相对轴向弦长位置分别为0.16和0.47时,涡轮得到最佳的整体提升效果,此时等熵效率提高了0.010%,比功率提升了0.141%。