期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hydrometallurgical recovery of lithium carbonate and iron phosphate from blended cathode materials of spent lithium-ion battery
1
作者 Shao-Le Song Run-Qing Liu +3 位作者 Miao-Miao Sun Ai-Gang Zhen Fan-Zhen Kong Yue Yang 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1275-1287,共13页
The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron pho... The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron phosphate and ternary are widely used in electric vehicles,so it is critical to design an effective recycling technique.In this study,an efficient method for recovering Li and Fe from the blended cathode materials of spent LiFePO_(4)and LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)batteries is proposed.First,87%A1 was removed by alkali leaching.Then,91.65%Li,72.08%Ni,64.6%Co and 71.66%Mn were further separated by selective leaching with H_(2)SO_(4)and H_(2)O_(2).Li,Ni,Co and Mn in solution were recovered in the form of Li_(2)CO_(3)and hydroxide respectively.Subsequently,98.38%Fe was leached from the residue by two stage process,and it is recovered as FePO_(4)·2H_(2)O with a purity of 99.5%by precipitation.Fe and P were present in FePO_(4)·2H_(2)O in amounts of 28.34%and 15.98%,respectively.Additionally,the drift and control of various components were discussed,and cost-benefit analysis was used to assess the feasibility of potential application. 展开更多
关键词 Spent lithium-ion battery blended cathode materials RECOVERY Lithium carbonate Iron phosphate
原文传递
Thermal stability of LiFePO_4/C-LiMn_2O_4 blended cathode materials 被引量:5
2
作者 DU YuanChao HUANG XiaoPeng +4 位作者 ZHANG KeYu LIANG Feng LI QiuXia YAO YaoChun DAI YongNian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第1期58-64,共7页
Safety is important to lithium ion battery materials. The thermal stability of LiFePOa/C-LiMn204 blended cathode materials is characterized by using TG, XRD, and SEM etc. The results show that LiFePO4/C-LiMn2O4 posses... Safety is important to lithium ion battery materials. The thermal stability of LiFePOa/C-LiMn204 blended cathode materials is characterized by using TG, XRD, and SEM etc. The results show that LiFePO4/C-LiMn2O4 possesses a worse thermal stability than pure spinel LiMn2O4 and pure olivine LiFePO4/C. When LiFePO4/C-LiMn2O4 blended cathode materials are sintered at 500℃ under Ar atmosphere, the sintered cathode materials emit O2, and appear impurity phases (Li3PO4, Fe2O3, Mn3O4). It is deduced that some chemical reactions take place between different materials, which leads to a worse discharge specific capacity. LiFePO4/C-LiMn2O4 blended cathode materials, therefore, need to be managed and controlled strictly for the sake of ther- mal stability and safety. 展开更多
关键词 LiFePO4/C-LiMn2O4 blended cathode materials impurity phases thermal stability
原文传递
Electrochemical Performance of LiMn2O4/LiFePO4 Blend Cathodes for Lithium Ion Batteries 被引量:1
3
作者 QIU Chengguang LIU Lina +4 位作者 DU Fei YANG Xu WANG Chunzhong CHEN Gang WEI Yingjin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2015年第2期270-275,共6页
A series of LiMn2O4/LiFePO4 blend cathodes was prepared by hand milling and ball milling in order to compensate the disadvantage of spinel LiMnaO4 and olivine LiFePO4. The morphologies of the blends were studied by sc... A series of LiMn2O4/LiFePO4 blend cathodes was prepared by hand milling and ball milling in order to compensate the disadvantage of spinel LiMnaO4 and olivine LiFePO4. The morphologies of the blends were studied by scanning electron microscopy, and their electrochemical properties were studied by charge-discharge cycling, cyclic voltarnmetry and electrochemical impedance spectroscopy. It is easy to obtain uniform LiMn2Oa/LiFePO4 blends by the hand milling technique, while significant particle agglomeration is caused by the ball milling technique. When the LiMn2O4:LiFePO4 mass ratio is 1:1, the nano-sized LiFePO4 powders not only uniformly cover the micron-sized LiMn2O4 particles but also effectively fill in the cavities of the LiMn2O4 space. Such morphology offers a good electrical contact and a high tap density, which leads to a high discharge capacity and good cycle stability. 展开更多
关键词 Lithium ion battery LIMN2O4 LIFEPO4 Blend cathode
原文传递
Synergetic effects of blended materials for Lithium-ion batteries
4
作者 REN Heng GUO YanQun +6 位作者 CHEN ZhenLian ZHANG XianHui ZHANG ZhiFeng LI YanTu ZHANG QingGang WU QingGuo LI Jun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第9期1370-1376,共7页
LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2, LiMn_2O_4 and LiCoO_2 are paired to make the blended materials for the cathode of lithium-ion batteries. The factors impacting on the characteristics of blended materials are studied usi... LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2, LiMn_2O_4 and LiCoO_2 are paired to make the blended materials for the cathode of lithium-ion batteries. The factors impacting on the characteristics of blended materials are studied using constant current charge/discharge measurement and electrochemical impedance spectroscopy. The results show that the three pairs of blended materials exhibit very different synergetic effects in high C-rate discharging. The mechanism of particle synergetic effect has a physical root on the compensating material property of blending components, which fundamentally correlates with their similarity and difference in crystalline and electronic structures. The AC impedance show the obvious changes that alternate the high C-rate performance, due to reduced particle impedance in blended materials. The pairs of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2-LiMn_2O and LiCoO_2-LiMn_2O_4 present obvious increases in high C-rate reversible capacities than does the pair LiCoO_2-LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2. 展开更多
关键词 blended cathode materials synergetic surplus rate performance electrochemical impedance spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部