This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) metho...This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.展开更多
Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion...Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.展开更多
Underdetermined blind signal separation (BSS) (with fewer observed mixtures than sources) is discussed. A novel searching-and-averaging method in time domain (SAMTD) is proposed. It can solve a kind of problems ...Underdetermined blind signal separation (BSS) (with fewer observed mixtures than sources) is discussed. A novel searching-and-averaging method in time domain (SAMTD) is proposed. It can solve a kind of problems that are very hard to solve by using sparse representation in frequency domain. Bypassing the disadvantages of traditional clustering (e.g., K-means or potential-function clustering), the durative- sparsity of a speech signal in time domain is used. To recover the mixing matrix, our method deletes those samples, which are not in the same or inverse direction of the basis vectors. To recover the sources, an improved geometric approach to overcomplete ICA (Independent Component Analysis) is presented. Several speech signal experiments demonstrate the good performance of the proposed method.展开更多
This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and...This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and the snapshots and thus the loss of target signal to noise ratio(SNR)of pulse compression.In this paper,we explore the spatial divergence of interference sources and consider the rotated array radar anti-mainlobe jamming problem as a generalized rotated array mixed signal(RAMS)model firstly.Then the corresponding algorithm improved blind source separation(BSS)using the frequency domain of robust principal component analysis(FDRPCA-BSS)is proposed based on the established rotating model.It can eliminate the influence of the rotating parts and address the problem of loss of SNR.Finally,the measured peakto-average power ratio(PAPR)of each separated channel is performed to identify the target echo channel among the separated channels.Simulation results show that the proposed method is practically feasible and can suppress the mainlobe jamming with lower loss of SNR.展开更多
基金Supported by the National Natural Science Foundation of China (60801052)Aeronautical Science Foundation of China (2009ZC52036)
文摘This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.
文摘Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.
基金Supported by the National Natural Science Foundation of China (Grant Nos. U0635001, 60505005 and 60674033)the Natural Science Fund of Guangdong Province (Grant Nos. 04205783 and 05006508)the Specialized Prophasic Basic Research Projects of the Ministry of Science and Technology of China (Grant No. 2005CCA04100)
文摘Underdetermined blind signal separation (BSS) (with fewer observed mixtures than sources) is discussed. A novel searching-and-averaging method in time domain (SAMTD) is proposed. It can solve a kind of problems that are very hard to solve by using sparse representation in frequency domain. Bypassing the disadvantages of traditional clustering (e.g., K-means or potential-function clustering), the durative- sparsity of a speech signal in time domain is used. To recover the mixing matrix, our method deletes those samples, which are not in the same or inverse direction of the basis vectors. To recover the sources, an improved geometric approach to overcomplete ICA (Independent Component Analysis) is presented. Several speech signal experiments demonstrate the good performance of the proposed method.
基金supported by the National Natural Science Foundation of China(62271255,61871218,61801211)the Fundamental Research Funds for the Central Universities(3082019NC2019002,NG2020001,NP2014504)+2 种基金the Open Research Fund of State Key Laboratory of Space-Ground Integrated Information Technology(2018_SGIIT_KFJJ_AI_03)the Funding of Postgraduate Research Practice&Innovation Program of Jiangsu Province(KYCX200201)the Open Research Fund of the Key Laboratory of Radar Imaging and Microwave Photonics(Nanjing University of Aeronautics and Astronautics),Ministry of E ducation(NJ20210001)。
文摘This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and the snapshots and thus the loss of target signal to noise ratio(SNR)of pulse compression.In this paper,we explore the spatial divergence of interference sources and consider the rotated array radar anti-mainlobe jamming problem as a generalized rotated array mixed signal(RAMS)model firstly.Then the corresponding algorithm improved blind source separation(BSS)using the frequency domain of robust principal component analysis(FDRPCA-BSS)is proposed based on the established rotating model.It can eliminate the influence of the rotating parts and address the problem of loss of SNR.Finally,the measured peakto-average power ratio(PAPR)of each separated channel is performed to identify the target echo channel among the separated channels.Simulation results show that the proposed method is practically feasible and can suppress the mainlobe jamming with lower loss of SNR.