In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signal...In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.展开更多
The concepts, principles and usages of principal component analysis (PCA) and independent component analysis (ICA) are interpreted. Then the algorithm and methodology of ICA-based blind source separation (BSS), ...The concepts, principles and usages of principal component analysis (PCA) and independent component analysis (ICA) are interpreted. Then the algorithm and methodology of ICA-based blind source separation (BSS), in which the pre-whitened based on PCA for observed signals is used, are researched. Aiming at the mixture signals, whose frequency components are overlapped by each other, a simulation of BSS to separate this type of mixture signals by using theory and approach of BSS has been done. The result shows that the BSS has some advantages what the traditional methodology of frequency analysis has not.展开更多
A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporat...A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporating any prior information about the source equations, the proposed algorithm can not only separate the mixed signals in just a few iterations, but also outperforms the fast independent component analysis (FastlCA) method when noise contamination is considerable.展开更多
Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion...Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.展开更多
There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME a...There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.展开更多
Blind source separation (BSS) technology is very useful in many fields, such as communication, radar and so on. Because of the advantage of BSS that it can separate multi-sources even not knowing the mix-coefficient a...Blind source separation (BSS) technology is very useful in many fields, such as communication, radar and so on. Because of the advantage of BSS that it can separate multi-sources even not knowing the mix-coefficient and the probability distribution, it can also be used in fault diagnosis. In this paper, we first use the BSS to deal with the sound from the machinery in fault diagnosis. We make a simulation of two sound sources and four sensors to test the result. Each source is a narrow-band source, which is composed of several sine waves. The result shows that the two sources can be well separated from the mixed signals. So we can draw a conclusion that BSS can improve the technology of sound fault diagnosis, especially in rotating machinery.展开更多
This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) metho...This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.展开更多
A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) al...A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.展开更多
This paper addresses the problem of Blind Source Separation (BSS) and presents a new BSS algorithm with a Signal-Adaptive Activation (SAA) function (SAA-BSS). By taking the sum of absolute values of the normalized kur...This paper addresses the problem of Blind Source Separation (BSS) and presents a new BSS algorithm with a Signal-Adaptive Activation (SAA) function (SAA-BSS). By taking the sum of absolute values of the normalized kurtoses as a contrast function, the obtained signal-adaptive activation function automatically satisfies the local stability and robustness conditions. The SAA-BSS exploits the natural gradient learning on the Stiefel manifold, and it is an equivariant algorithm with a moderate computational load. Computer simulations show that the SAA-BSS can perform blind separation of mixed sub-Gaussian and super-Gaussian signals and it works more efficiently than the existing algorithms in convergence speed and robustness against outliers.展开更多
A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) ...A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression.展开更多
In underdetermined blind source separation, more sources are to be estimated from less observed mixtures without knowing source signals and the mixing matrix. This paper presents a robust clustering algorithm for unde...In underdetermined blind source separation, more sources are to be estimated from less observed mixtures without knowing source signals and the mixing matrix. This paper presents a robust clustering algorithm for underdetermined blind separation of sparse sources with unknown number of sources in the presence of noise. It uses the robust competitive agglomeration (RCA) algorithm to estimate the source number and the mixing matrix, and the source signals then are recovered by using the interior point linear programming. Simulation results show good performance of the proposed algorithm for underdetermined blind sources separation (UBSS).展开更多
When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model ...When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function.展开更多
A new technique is proposed to solve the blind source separation (BSS) given only a single channel observation. The basis functions and the density of the coefficients of source signals learned by ICA are used as the ...A new technique is proposed to solve the blind source separation (BSS) given only a single channel observation. The basis functions and the density of the coefficients of source signals learned by ICA are used as the prior knowledge. Based on the learned prior information the learning rules of single channel BSS are presented by maximizing the joint log likelihood of the mixed sources to obtain source signals from single observation, in which the posterior density of the given measurements is maximized. The experimental results exhibit a successful separation performance for mixtures of speech and music signals.展开更多
A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices i...A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identification of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building simulation and the Heritage court tower building.展开更多
Wavelet packets decompose signals in to broader components using linear spectral bisecting. Mixing matrix is the key issue in the Blind Source Separation (BSS) literature especially in under-determined cases. In this ...Wavelet packets decompose signals in to broader components using linear spectral bisecting. Mixing matrix is the key issue in the Blind Source Separation (BSS) literature especially in under-determined cases. In this paper, we propose a simple and novel method in Short Time Wavelet Packet (STWP) analysis to estimate blindly the mixing matrix of speech signals from noise free linear mixtures in over-complete cases. In this paper, the Laplacian model is considered in short time-wavelet packets and is applied to each histogram of packets. Expectation Maximization (EM) algorithm is used to train the model and calculate the model parameters. In our simulations, comparison with the other recent results will be computed and it is shown that our results are better than others. It is shown that complexity of computation of model is decreased and consequently the speed of convergence is increased.展开更多
Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation...Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.展开更多
The proposed Blind Source Separation method(BSS),based on sparse representations,fuses time-frequency analysis and the clustering approach to separate underdetermined speech mixtures in the anechoic case regardless of...The proposed Blind Source Separation method(BSS),based on sparse representations,fuses time-frequency analysis and the clustering approach to separate underdetermined speech mixtures in the anechoic case regardless of the number of sources.The method remedies the insufficiency of the Degenerate Unmixing Estimation Technique(DUET) which assumes the number of sources a priori.In the proposed algorithm,the Short-Time Fourier Transform(STFT) is used to obtain the sparse rep-resentations,a clustering method called Unsupervised Robust C-Prototypes(URCP) which can ac-curately identify multiple clusters regardless of the number of them is adopted to replace the histo-gram-based technique in DUET,and the binary time-frequency masks are constructed to separate the mixtures.Experimental results indicate that the proposed method results in a substantial increase in the average Signal-to-Interference Ratio(SIR),and maintains good speech quality in the separation results.展开更多
基金supported by National Natural Science Foundation of China (62171390)Central Universities of Southwest Minzu University (ZYN2022032,2023NYXXS034)the State Scholarship Fund of the China Scholarship Council (NO.202008510081)。
文摘In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system.
基金This project is supported by National Natural Science Foundation of China(No.50405033).
文摘The concepts, principles and usages of principal component analysis (PCA) and independent component analysis (ICA) are interpreted. Then the algorithm and methodology of ICA-based blind source separation (BSS), in which the pre-whitened based on PCA for observed signals is used, are researched. Aiming at the mixture signals, whose frequency components are overlapped by each other, a simulation of BSS to separate this type of mixture signals by using theory and approach of BSS has been done. The result shows that the BSS has some advantages what the traditional methodology of frequency analysis has not.
基金Project supported by the National Natural Science Foundation of China(Grant No.60872123)the Joint Fund of the National Natural Science Foundation and the Natural Science Foundation of Guangdong Province,China(Grant No.U0835001)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.2012ZM0025)the South China University of Technology,China,and the Fund for Higher-Level Talents in Guangdong Province,China(Grant No.N9101070)
文摘A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporating any prior information about the source equations, the proposed algorithm can not only separate the mixed signals in just a few iterations, but also outperforms the fast independent component analysis (FastlCA) method when noise contamination is considerable.
文摘Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.
文摘There are two major approaches for Blind Signal Separation (BSS) problem: Maximum Entropy (ME) and Minimum Mutual Information (MMI) algorithms. Based on the recursive architecture and the relationship between the ME and MMI algorithms, an Extended ME(EME) algorithm is proposed by using probability density function (pdf) estimation of the outputs to deduce the corresponding iterative formulas in BSS. Based on the simulation results, it can be concluded that the proposed algorithm has better performances than the traditional ME algorithm in convolute mixture BSS problems.
文摘Blind source separation (BSS) technology is very useful in many fields, such as communication, radar and so on. Because of the advantage of BSS that it can separate multi-sources even not knowing the mix-coefficient and the probability distribution, it can also be used in fault diagnosis. In this paper, we first use the BSS to deal with the sound from the machinery in fault diagnosis. We make a simulation of two sound sources and four sensors to test the result. Each source is a narrow-band source, which is composed of several sine waves. The result shows that the two sources can be well separated from the mixed signals. So we can draw a conclusion that BSS can improve the technology of sound fault diagnosis, especially in rotating machinery.
基金Supported by the National Natural Science Foundation of China (60801052)Aeronautical Science Foundation of China (2009ZC52036)
文摘This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.
文摘A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely.
基金Supported by the major program of the National Natural Science Foundation of China (No.60496311)the Chinese Postdoctoral Science Foundation (No.2004035061)the Foundation of Intel China Research Center.
文摘This paper addresses the problem of Blind Source Separation (BSS) and presents a new BSS algorithm with a Signal-Adaptive Activation (SAA) function (SAA-BSS). By taking the sum of absolute values of the normalized kurtoses as a contrast function, the obtained signal-adaptive activation function automatically satisfies the local stability and robustness conditions. The SAA-BSS exploits the natural gradient learning on the Stiefel manifold, and it is an equivariant algorithm with a moderate computational load. Computer simulations show that the SAA-BSS can perform blind separation of mixed sub-Gaussian and super-Gaussian signals and it works more efficiently than the existing algorithms in convergence speed and robustness against outliers.
基金Project supported by the National Natural Science Foundation of China (Grant No.60872114)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Graduate Student Innovation Foundation of Shanghai University (Grant No.SHUCX101086)
文摘A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression.
基金the Research Foundation for Doctoral Programs of Higher Education of China (Grant No.20060280003)the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘In underdetermined blind source separation, more sources are to be estimated from less observed mixtures without knowing source signals and the mixing matrix. This paper presents a robust clustering algorithm for underdetermined blind separation of sparse sources with unknown number of sources in the presence of noise. It uses the robust competitive agglomeration (RCA) algorithm to estimate the source number and the mixing matrix, and the source signals then are recovered by using the interior point linear programming. Simulation results show good performance of the proposed algorithm for underdetermined blind sources separation (UBSS).
文摘When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function.
基金Sponsored by the Research Foundation of Shanghai Municipal Education Commission(Grant No06FZ012 and 06FZ028)
文摘A new technique is proposed to solve the blind source separation (BSS) given only a single channel observation. The basis functions and the density of the coefficients of source signals learned by ICA are used as the prior knowledge. Based on the learned prior information the learning rules of single channel BSS are presented by maximizing the joint log likelihood of the mixed sources to obtain source signals from single observation, in which the posterior density of the given measurements is maximized. The experimental results exhibit a successful separation performance for mixtures of speech and music signals.
文摘A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation (SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identification of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building simulation and the Heritage court tower building.
文摘Wavelet packets decompose signals in to broader components using linear spectral bisecting. Mixing matrix is the key issue in the Blind Source Separation (BSS) literature especially in under-determined cases. In this paper, we propose a simple and novel method in Short Time Wavelet Packet (STWP) analysis to estimate blindly the mixing matrix of speech signals from noise free linear mixtures in over-complete cases. In this paper, the Laplacian model is considered in short time-wavelet packets and is applied to each histogram of packets. Expectation Maximization (EM) algorithm is used to train the model and calculate the model parameters. In our simulations, comparison with the other recent results will be computed and it is shown that our results are better than others. It is shown that complexity of computation of model is decreased and consequently the speed of convergence is increased.
文摘Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.
文摘The proposed Blind Source Separation method(BSS),based on sparse representations,fuses time-frequency analysis and the clustering approach to separate underdetermined speech mixtures in the anechoic case regardless of the number of sources.The method remedies the insufficiency of the Degenerate Unmixing Estimation Technique(DUET) which assumes the number of sources a priori.In the proposed algorithm,the Short-Time Fourier Transform(STFT) is used to obtain the sparse rep-resentations,a clustering method called Unsupervised Robust C-Prototypes(URCP) which can ac-curately identify multiple clusters regardless of the number of them is adopted to replace the histo-gram-based technique in DUET,and the binary time-frequency masks are constructed to separate the mixtures.Experimental results indicate that the proposed method results in a substantial increase in the average Signal-to-Interference Ratio(SIR),and maintains good speech quality in the separation results.
基金The work was supported by the Program for New Century Excellent Talents in University (No. NCET-05-0582) and by the Natural Science Foundation of Shandong Province (No. Y2007G04).