Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerica...Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerically calculated by the transverse magnetic method under transfer-matrix polarization, while the sensitivity is analyzed and compared with those of the surface plasmon resonance sensing method. It is found that the intensity of magnetic field is considerably enhanced in the region of the terminated layer of the multilayer stacks, and that BSW resonance appears only in the interface of the graphene and solution. Influences of the graphene layers and the thickness of a unit cell in Ph Cs on the reflectance are studied as well. In particular, by analyzing the performance of BSW sensors with the graphene monolayer,the wavelength sensitivity of the proposed sensor is 1040 nm/RIU whereas the angular sensitivity is 25.1°/RIU. In addition,the maximum of figure of merit can reach as high as 3000 RIU^-1. Thus, by integrating graphene in a simple Kretschmann structure, one can obtain an enhancement of the light–graphene interaction, which is prospective for creating label-free,low-cost and high-sensitivity optical biosensors.展开更多
Strong nonlinear, electro-optical, and thermo-optical properties of lithium niobate(LN) have gained much attention. However, the implementation of LiNbO_3 in real devices is not a trivial task due to difficulties in m...Strong nonlinear, electro-optical, and thermo-optical properties of lithium niobate(LN) have gained much attention. However, the implementation of LiNbO_3 in real devices is not a trivial task due to difficulties in manufacturing and handling thin-film LN. In this study, we investigate an optical device where the Bloch surface wave(BSW) propagates on the thin-film LN to unlock its properties. First, access to the LN film from air(or open space) is important to exploit its properties. Second, for sustaining the BSW, one-dimensional photonic crystal(1DPhC) is necessary to be fabricated under the thin-film LN. We consider two material platforms to realize such a device: bulk LN and commercial thin-film LN. Clear reflectance dips observed in far-field measurements demonstrate the propagation of BSWs on top of the LN surface of the designed 1DPhCs.展开更多
At the end of the 1970s,it was confirmed that dielectric multilayers can sustain Bloch surface waves(BSWs).However,BSWs were not widely studied until more recently.Taking advantage of their high-quality factor,sensing...At the end of the 1970s,it was confirmed that dielectric multilayers can sustain Bloch surface waves(BSWs).However,BSWs were not widely studied until more recently.Taking advantage of their high-quality factor,sensing applications have focused on BSWs.Thus far,no work has been performed to manipulate and control the natural surface propagations in terms of defined functions with two-dimensional(2D)components,targeting the realization of a 2D system.In this study,we demonstrate that 2D photonic components can be implemented by coating an in-plane shaped ultrathin(l/15)polymer layer on the dielectric multilayer.The presence of the polymer modifies the local effective refractive index,enabling direct manipulation of the BSW.By locally shaping the geometries of the 2D components,the BSW can be deflected,diffracted,focused and coupled with 2D freedom.Enabling BSW manipulation in 2D,the dielectric multilayer can play a new role as a robust platform for 2D optics,which can pave the way for integration in photonic chips.Multiheterodyne near-field measurements are used to study light propagation through micro-and nano-optical components.We demonstrate that a lens-shaped polymer layer can be considered as a 2D component based on the agreement between near-field measurements and theoretical calculations.Both the focal shift and the resolution of a 2D BSW lens are measured for the first time.The proposed platform enables the design of 2D all-optical integrated systems,which have numerous potential applications,including molecular sensing and photonic circuits.展开更多
A new type of device consisting of a lithium niobate film coupled with a distributed Bragg reflector(DBR)was theoretically proposed to explore and release Bloch surface waves for applications in sensing and detection....A new type of device consisting of a lithium niobate film coupled with a distributed Bragg reflector(DBR)was theoretically proposed to explore and release Bloch surface waves for applications in sensing and detection.The film and grating made of lithium niobate(LiNbO_(3))were placed on both sides of the DBR and a concentrated electromagnetic field was formed at the film layer.By adjusting the spatial incidence angle of the incident light,two detection and analysis modes were obtained,including surface diffraction detection and guided Bloch detection.Surface diffraction detection was used to detect the gas molecule concentrations,while guided Bloch detection was applied for the concentration detection of biomolecule-modulated biological solutions.According to the drift of the Fano curve,the average sensor sensitivities from the analysis of the two modes were 1560°/RIU and 1161°/RIU,and the maximum detection sensitivity reached2320/RIU and 2200°/RIU,respectively.This study revealed the potential application of LiNbO_(3)as a tunable material when combined with DBR to construct a new type of biosensor,which offered broad application prospects in Bloch surface wave biosensors.展开更多
This paper puts forward a novel method of measuring the thin period-structure-film thickness based on the Bloch surface wave(BSW) enhanced Goos–Hanchen(GH) shift in one-dimensional photonic crystal(1DPC). The BSW phe...This paper puts forward a novel method of measuring the thin period-structure-film thickness based on the Bloch surface wave(BSW) enhanced Goos–Hanchen(GH) shift in one-dimensional photonic crystal(1DPC). The BSW phenomenon appearing in 1DPC enhances the GH shift generated in the attenuated total internal reflection structure. The GH shift is closely related to the thickness of the film which is composed of layer-structure of 1DPC. The GH shifts under multiple different incident light conditions will be obtained by varying the wavelength and angle of the measured light, and the thickness distribution of the entire structure of 1DPC is calculated by the particle swarm optimization(PSO) algorithm.The relationship between the structure of a 1DPC film composed of TiO_(2) and SiO_(2) layers and the GH shift, is investigated.Under the specific photonic crystal structure and incident conditions, a giant GH shift, 5.1 × 10^(3) times the wavelength of incidence, can be obtained theoretically. Simulation and calculation results show that the thickness of termination layer and periodic structure bilayer of 1DPC film with 0.1-nm resolution can be obtained by measuring the GH shifts. The exact structure of a 1DPC film is innovatively measured by the BSW-enhanced GH shift.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203211 and 41675154)the Six Major Talent Peak Expert of Jiangsu Province,China(Grant No.2015-XXRJ-014)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20141483)
文摘Bloch surface waves(BSWs) are excited in one-dimensional photonic crystals(Ph Cs) terminated by a graphene monolayer under the Kretschmann configuration. The field distribution and reflectance spectra are numerically calculated by the transverse magnetic method under transfer-matrix polarization, while the sensitivity is analyzed and compared with those of the surface plasmon resonance sensing method. It is found that the intensity of magnetic field is considerably enhanced in the region of the terminated layer of the multilayer stacks, and that BSW resonance appears only in the interface of the graphene and solution. Influences of the graphene layers and the thickness of a unit cell in Ph Cs on the reflectance are studied as well. In particular, by analyzing the performance of BSW sensors with the graphene monolayer,the wavelength sensitivity of the proposed sensor is 1040 nm/RIU whereas the angular sensitivity is 25.1°/RIU. In addition,the maximum of figure of merit can reach as high as 3000 RIU^-1. Thus, by integrating graphene in a simple Kretschmann structure, one can obtain an enhancement of the light–graphene interaction, which is prospective for creating label-free,low-cost and high-sensitivity optical biosensors.
基金Collgium SMYLE(SMart SYstems for a better LifE)Agence Nationale de la Recherche(ANR)ASTRID project Esencyal(ANR-13-ASTR-0019-01)+1 种基金French RENATECH NetworkFEMTO-ST Technological Facility
文摘Strong nonlinear, electro-optical, and thermo-optical properties of lithium niobate(LN) have gained much attention. However, the implementation of LiNbO_3 in real devices is not a trivial task due to difficulties in manufacturing and handling thin-film LN. In this study, we investigate an optical device where the Bloch surface wave(BSW) propagates on the thin-film LN to unlock its properties. First, access to the LN film from air(or open space) is important to exploit its properties. Second, for sustaining the BSW, one-dimensional photonic crystal(1DPhC) is necessary to be fabricated under the thin-film LN. We consider two material platforms to realize such a device: bulk LN and commercial thin-film LN. Clear reflectance dips observed in far-field measurements demonstrate the propagation of BSWs on top of the LN surface of the designed 1DPhCs.
基金This work was supported by the Swiss National Science Foundation.
文摘At the end of the 1970s,it was confirmed that dielectric multilayers can sustain Bloch surface waves(BSWs).However,BSWs were not widely studied until more recently.Taking advantage of their high-quality factor,sensing applications have focused on BSWs.Thus far,no work has been performed to manipulate and control the natural surface propagations in terms of defined functions with two-dimensional(2D)components,targeting the realization of a 2D system.In this study,we demonstrate that 2D photonic components can be implemented by coating an in-plane shaped ultrathin(l/15)polymer layer on the dielectric multilayer.The presence of the polymer modifies the local effective refractive index,enabling direct manipulation of the BSW.By locally shaping the geometries of the 2D components,the BSW can be deflected,diffracted,focused and coupled with 2D freedom.Enabling BSW manipulation in 2D,the dielectric multilayer can play a new role as a robust platform for 2D optics,which can pave the way for integration in photonic chips.Multiheterodyne near-field measurements are used to study light propagation through micro-and nano-optical components.We demonstrate that a lens-shaped polymer layer can be considered as a 2D component based on the agreement between near-field measurements and theoretical calculations.Both the focal shift and the resolution of a 2D BSW lens are measured for the first time.The proposed platform enables the design of 2D all-optical integrated systems,which have numerous potential applications,including molecular sensing and photonic circuits.
基金Project supported by Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180098)National Laboratory of Solid State Microstructures,Nanjing University(Grant No.M33042)。
文摘A new type of device consisting of a lithium niobate film coupled with a distributed Bragg reflector(DBR)was theoretically proposed to explore and release Bloch surface waves for applications in sensing and detection.The film and grating made of lithium niobate(LiNbO_(3))were placed on both sides of the DBR and a concentrated electromagnetic field was formed at the film layer.By adjusting the spatial incidence angle of the incident light,two detection and analysis modes were obtained,including surface diffraction detection and guided Bloch detection.Surface diffraction detection was used to detect the gas molecule concentrations,while guided Bloch detection was applied for the concentration detection of biomolecule-modulated biological solutions.According to the drift of the Fano curve,the average sensor sensitivities from the analysis of the two modes were 1560°/RIU and 1161°/RIU,and the maximum detection sensitivity reached2320/RIU and 2200°/RIU,respectively.This study revealed the potential application of LiNbO_(3)as a tunable material when combined with DBR to construct a new type of biosensor,which offered broad application prospects in Bloch surface wave biosensors.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51575387 and 51827812)。
文摘This paper puts forward a novel method of measuring the thin period-structure-film thickness based on the Bloch surface wave(BSW) enhanced Goos–Hanchen(GH) shift in one-dimensional photonic crystal(1DPC). The BSW phenomenon appearing in 1DPC enhances the GH shift generated in the attenuated total internal reflection structure. The GH shift is closely related to the thickness of the film which is composed of layer-structure of 1DPC. The GH shifts under multiple different incident light conditions will be obtained by varying the wavelength and angle of the measured light, and the thickness distribution of the entire structure of 1DPC is calculated by the particle swarm optimization(PSO) algorithm.The relationship between the structure of a 1DPC film composed of TiO_(2) and SiO_(2) layers and the GH shift, is investigated.Under the specific photonic crystal structure and incident conditions, a giant GH shift, 5.1 × 10^(3) times the wavelength of incidence, can be obtained theoretically. Simulation and calculation results show that the thickness of termination layer and periodic structure bilayer of 1DPC film with 0.1-nm resolution can be obtained by measuring the GH shifts. The exact structure of a 1DPC film is innovatively measured by the BSW-enhanced GH shift.