期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于BSBL-BO算法的DME脉冲干扰抑制方法 被引量:5
1
作者 李冬霞 陈秋雨 +1 位作者 王磊 刘海涛 《系统工程与电子技术》 EI CSCD 北大核心 2021年第9期2649-2656,共8页
针对测距仪(distance measure equipment,DME)信号干扰L频段数字航空通信系统1(L-band digital aeronautical communication system 1,L-DACS1)正交频分复用(orthogonal frequency-division multiplexing,OFDM)接收机的问题,提出基于块... 针对测距仪(distance measure equipment,DME)信号干扰L频段数字航空通信系统1(L-band digital aeronautical communication system 1,L-DACS1)正交频分复用(orthogonal frequency-division multiplexing,OFDM)接收机的问题,提出基于块稀疏贝叶斯学习边界优化(block sparsEbayesian learning-thEbound optimization,BSBL-BO)算法的DME脉冲干扰抑制方法。首先,利用OFDM接收机空子载波不传输有用信号的特点构造针对DME脉冲干扰信号的压缩感知模型;然后基于BSBL-BO算法重构DME脉冲干扰信号;最后在时域进行干扰消除。仿真结果表明,该方法比已有的脉冲干扰抑制方法具有更高的重构精度和更快的运算速度,进一步降低了OFDM接收机的误比特率,提高了L-DACS1系统前向链路传输性能。 展开更多
关键词 L频段数字航空通信系统1型 测距仪干扰 贝叶斯压缩感知 块稀疏贝叶斯学习
下载PDF
联合自适应LASSO与块稀疏贝叶斯直接定位方法
2
作者 罗军 张顺生 《雷达科学与技术》 北大核心 2024年第3期265-274,共10页
无源定位中,直接定位方法优势在于适用低信噪比、参数独立等。然而,当辐射源距无源侦测系统较远时,受低信噪比的影响,接收信号模型中存在的部分未知参数会大幅降低算法对于辐射源的定位性能。为了有效地解决该难题,给出了一种联合自适应... 无源定位中,直接定位方法优势在于适用低信噪比、参数独立等。然而,当辐射源距无源侦测系统较远时,受低信噪比的影响,接收信号模型中存在的部分未知参数会大幅降低算法对于辐射源的定位性能。为了有效地解决该难题,给出了一种联合自适应LASSO先验与块稀疏贝叶斯的辐射源直接定位方法。经由贝叶斯理论构建分层稀疏模型,联合不同的先验分布以赋予信号中元素独立的自适应LASSO,同时探索信号的块结构和块内相关性,联合具有共享稀疏性的不同基站的字典重建过完备字典,实现远距离辐射源定位。仿真结果表明:在远距离下,当快拍数设置较少,信噪比设定较低时,在辐射源定位效果上所提算法显著优于如MUSIC等传统直接定位算法、Laplace先验方法以及块稀疏贝叶斯方法。 展开更多
关键词 直接定位 自适应LASSO先验 块稀疏贝叶斯 过完备字典
下载PDF
基于EBSBL-BO算法的L-DACS系统干扰抑制方法 被引量:3
3
作者 李冬霞 王雪 +1 位作者 刘海涛 王磊 《信号处理》 CSCD 北大核心 2022年第10期2192-2200,共9页
L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)是未来面向航路阶段的空地数据链路,其工作频段部署在两个测距仪(distance measure equipment,DME)工作频段之间,为了消除测距仪产生的高功率脉冲信号对L-D... L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)是未来面向航路阶段的空地数据链路,其工作频段部署在两个测距仪(distance measure equipment,DME)工作频段之间,为了消除测距仪产生的高功率脉冲信号对L-DACS系统前向链路正交频分复用接收机的干扰,本文提出基于扩展稀疏贝叶斯-边界优化(extended block sparse Bayesian learning-boundary optimization,EBSBL-BO)算法的高功率DME脉冲干扰抑制方法。首先,利用L-DACS系统正交频分复用接收机的空子载波建立DME干扰信号压缩感知模型;然后,基于EBSBL-BO算法对DME信号进行重构;最后将高功率DME脉冲信号在时域消除。仿真结果显示:本文算法与其他稀疏贝叶斯重构算法相比,本文算法DME脉冲信号重构精度更高,正交频分复用接收机误码率更低,可有效改善L-DACS系统正交频分复用接收性能。 展开更多
关键词 L频段数字航空通信系统 块稀疏贝叶斯 测距仪
下载PDF
基于块稀疏贝叶斯学习的体域网心电压缩采样 被引量:6
4
作者 彭向东 张华 刘继忠 《传感技术学报》 CAS CSCD 北大核心 2015年第3期401-407,共7页
为有效提高体域网的实时性和降低体域网的功耗,提出一种基于块稀疏贝叶斯学习的体域网心电压缩采样方法。该方法在体域网框架下,利用压缩采样理论,在体域网的传感节点利用二进制随机观测矩阵对心电信号进行压缩采样,远程监护中心获得采... 为有效提高体域网的实时性和降低体域网的功耗,提出一种基于块稀疏贝叶斯学习的体域网心电压缩采样方法。该方法在体域网框架下,利用压缩采样理论,在体域网的传感节点利用二进制随机观测矩阵对心电信号进行压缩采样,远程监护中心获得采样值之后,利用块稀疏贝叶斯学习重构算法和离散余弦稀疏变换矩阵对心电信号进行重构。实验结果表明,当心电信号压缩率在70%~90%时,基于块稀疏贝叶斯学习的重构算法要比其他重构算法的重构信噪比高出3 d B^21 d B。该方法能有效减少数据采样,减轻后续的数据存储、数据传输压力,提高体域网的实时性。同时该方法具有功耗低,易于硬件实现的优点。 展开更多
关键词 块稀疏贝叶斯学习 体域网 心电信号 压缩采样
下载PDF
基于块稀疏贝叶斯学习的人体运动模式识别 被引量:3
5
作者 吴建宁 徐海东 +1 位作者 凌雲 王佳境 《计算机应用》 CSCD 北大核心 2016年第4期1039-1044,共6页
在人体运动模式识别中,传统稀疏表示分类算法未考虑待测试样本相应稀疏系数向量内在块结构相关性信息,影响了算法识别性能。为此,提出一种基于块稀疏模型的人体运动模式识别方法。该方法充分利用人体运动模式内在块稀疏结构,将人体运动... 在人体运动模式识别中,传统稀疏表示分类算法未考虑待测试样本相应稀疏系数向量内在块结构相关性信息,影响了算法识别性能。为此,提出一种基于块稀疏模型的人体运动模式识别方法。该方法充分利用人体运动模式内在块稀疏结构,将人体运动模式识别问题转化为稀疏表示问题,采用块稀疏贝叶斯学习算法,求解基于样本训练集优化稀疏表示待测样本的稀疏系数,并根据稀疏系数重构残差判定待识别动作类别,能有效提高人体运动模式识别率。选用包含多类别人体动作行为模式的USC-HAD数据库对所提算法性能进行了验证。实验结果表明,所提算法能够有效捕获不同运动模式内在差异信息,平均动作识别率达到97.86%,比传统动作识别方法平均提高近5%,有效提高了动作识别准确率。 展开更多
关键词 压缩感知 稀疏表示 块稀疏贝叶斯学习 人体运动 模式识别
下载PDF
块稀疏贝叶斯模型下的跳频信号时频分析 被引量:2
6
作者 李雷 郭英 +4 位作者 张坤峰 高维廷 于欣永 李红光 陈娟 《信号处理》 CSCD 北大核心 2018年第1期107-113,共7页
针对传统时频分析方法存在的时频聚集性差以及交叉项干扰的问题,本文将接收到的跳频信号进行分割,构建时频稀疏模型,利用模型中的统计特性和结构特性采用块稀疏贝叶斯学习算法对跳频信号的时频图进行重构,在不需知道稀疏度和噪声强度的... 针对传统时频分析方法存在的时频聚集性差以及交叉项干扰的问题,本文将接收到的跳频信号进行分割,构建时频稀疏模型,利用模型中的统计特性和结构特性采用块稀疏贝叶斯学习算法对跳频信号的时频图进行重构,在不需知道稀疏度和噪声强度的情况下,得到了高精度的时频图。但是由于算法在高维参数空间进行参数估计时复杂度较高,本文采用近似替换的方法对该算法进行改进,将高维参数空间转换到原始参数空间计算,大大减少了算法的复杂度,仿真结果表明改进算法在低信噪比的情况下能有效的得到跳频信号的高精度时频图且复杂度大大降低。 展开更多
关键词 跳频信号 块稀疏 稀疏贝叶斯学习 时频分析
下载PDF
针对块稀疏信道的估计算法 被引量:2
7
作者 吕斌 杨震 冯友宏 《信号处理》 CSCD 北大核心 2015年第12期1680-1687,共8页
无线多径信道中存在着块稀疏结构。针对块稀疏信道中分块信息是否已知的不同场景,分别提出了两种基于块稀疏贝叶斯学习(BSBL)框架的OFDM系统信道估计算法。这两种算法根据边界最优(BO)方法估计信道分块的稀疏度参数,提升算法运算速率。... 无线多径信道中存在着块稀疏结构。针对块稀疏信道中分块信息是否已知的不同场景,分别提出了两种基于块稀疏贝叶斯学习(BSBL)框架的OFDM系统信道估计算法。这两种算法根据边界最优(BO)方法估计信道分块的稀疏度参数,提升算法运算速率。为进一步提升信道估计性能,在基于BSBL框架算法仅利用导频信号估计信道的基础上,又提出了基于联合块稀疏贝叶斯学习(JBSBL)的信道估计新算法,该算法利用导频与数据子载波实现信道的联合估计。仿真结果表明,与传统的信道估计算法相比,本文提出的算法均可获得很好的信道估计性能,且基于JBSBL的信道估计算法性能更佳。 展开更多
关键词 块稀疏信道 信道估计 块稀疏贝叶斯学习
下载PDF
基于小波包字典优化的旋转机械振动信号压缩感知重构方法 被引量:5
8
作者 温江涛 孙洁娣 +1 位作者 于洋 闫常弘 《振动与冲击》 EI CSCD 北大核心 2018年第22期164-172,共9页
采用工业无线传感器网络的机械状态监测系统需要进行复杂的数据压缩和高精度的重构,而传感器网络节点资源受限,针对这一问题提出基于小波包字典优化的旋转机械振动信号压缩感知重构方法。该方法结合小波包多分辨率分析及K-SVD字典训练方... 采用工业无线传感器网络的机械状态监测系统需要进行复杂的数据压缩和高精度的重构,而传感器网络节点资源受限,针对这一问题提出基于小波包字典优化的旋转机械振动信号压缩感知重构方法。该方法结合小波包多分辨率分析及K-SVD字典训练方法,提出了小波包字典优化方法代替传统的正交基字典稀疏表示方法,提高稀疏度。根据旋转机械振动信号自身特征,提出用块稀疏贝叶斯学习最大期望值算法,代替传统仅依赖于稀疏假设的算法实现信号重构。实际轴承振动信号仿真结果表明,该方法相对于传统的压缩感知方法重构性能明显提高。 展开更多
关键词 旋转机械振动信号 压缩感知重构 小波包字典优化 K-SVD 块稀疏贝叶斯学习
下载PDF
一种基于块稀疏贝叶斯学习的压缩图像融合算法 被引量:3
9
作者 刘哲 顾淑音 +1 位作者 南炳炳 李强 《光子学报》 EI CAS CSCD 北大核心 2013年第11期1365-1369,共5页
针对自然信号、图像中的丰富时序结构会影响基于多观测向量的压缩图像融合算法性能,基于块稀疏贝叶斯学习,构造了一种新的压缩图像融合算法.该算法采用概率性方法,利用正定矩阵模型化数据间的时序结构对图像中的时序结构进行建模,并将... 针对自然信号、图像中的丰富时序结构会影响基于多观测向量的压缩图像融合算法性能,基于块稀疏贝叶斯学习,构造了一种新的压缩图像融合算法.该算法采用概率性方法,利用正定矩阵模型化数据间的时序结构对图像中的时序结构进行建模,并将其统一在多观测向量模型中,进而通过贝叶斯规则和对超参量的估计,获取原始图像数据的最大后验估计.为验证该算法的有效性,对其进行了图像融合实验.仿真实验结果表明,与单观测向量模型下的压缩图像融合算法相比,所提出算法能有效降低所需的采样数量,且对多类图像都表现出更优的融合效果. 展开更多
关键词 压缩感知 压缩图像融合 块稀疏贝叶斯学习 多观测向量模型 时序结构
下载PDF
基于块稀疏贝叶斯学习压缩感知的心音重构 被引量:1
10
作者 甘凤萍 王海滨 +3 位作者 房玉 张凯 秦国瑾 赵逍 《计算机工程与设计》 北大核心 2016年第4期1037-1041,共5页
为提高体域网远程传输心音信号的重构精度、运行时间及处理数据量,对一种基于块稀疏贝叶斯学习的压缩感知重构心音方法进行研究。在传感节点端对心音信号做分块处理,进行离散余弦变换字典训练;通过稀疏二进制矩阵对心音信号进行压缩,并... 为提高体域网远程传输心音信号的重构精度、运行时间及处理数据量,对一种基于块稀疏贝叶斯学习的压缩感知重构心音方法进行研究。在传感节点端对心音信号做分块处理,进行离散余弦变换字典训练;通过稀疏二进制矩阵对心音信号进行压缩,并传送至终端;利用块稀疏贝叶斯学习对终端压缩的心音重构,将重构结果与传统的正交匹配追踪结果比较。实验结果表明,块稀疏贝叶斯学习算法比正交匹配追踪算法重构的结构相似度高0.2-0.3,在信噪比方面高10db-30db,所提方法具有重构精度高,处理心音数据量大,运行时间快的显著优势。 展开更多
关键词 压缩感知 块稀疏贝叶斯学习 正交匹配追踪 心音 体域网
下载PDF
用块稀疏贝叶斯学习算法重构识别体域网步态模式 被引量:1
11
作者 吴建宁 徐海东 《计算机应用》 CSCD 北大核心 2015年第5期1492-1498,共7页
针对低功耗体域网步态远程监测终端非稀疏加速度数据重构和步态模式识别性能优化问题,提出了一种基于块稀疏贝叶斯学习的体域网远程步态模式重构识别新方法,该方法基于体域网远程步态监测系统架构和压缩感知框架,在体域网传感节点利用... 针对低功耗体域网步态远程监测终端非稀疏加速度数据重构和步态模式识别性能优化问题,提出了一种基于块稀疏贝叶斯学习的体域网远程步态模式重构识别新方法,该方法基于体域网远程步态监测系统架构和压缩感知框架,在体域网传感节点利用线性稀疏矩阵压缩原始加速度数据,减少传输数据量,降低其功耗,同时在远程终端基于块稀疏贝叶斯学习算法充分利用加速度数据块结构内在相关性,获取加速度数据内在稀疏性,有效提高非稀疏加速度数据重构性能,为准确识别步态模式提供可靠的数据支撑。采用USC-HAD数据库中行走、跑、跳、上楼、下楼五种步态运动的加速度数据验证新方法的有效性,实验结果表明,基于所提算法的加速度数据重构性能明显优于传统压缩感知重构算法性能,使基于支持向量机多步态分类器识别准确率可达98%,显著提高体域网远程步态模式识别性能。所提新方法不仅有效提高非稀疏加速度数据重构和步态模式识别性能,并且也有助于设计低功耗、低成本的体域网加速度数据采集系统,为体域网远程监测步态模式变化提供一个新方法和新思路。 展开更多
关键词 块稀疏贝叶斯学习算法 压缩感知 体域网 步态模式识别
下载PDF
基于稀疏贝叶斯学习的雷达目标成像技术 被引量:1
12
作者 张西托 杜小勇 王壮 《计算机仿真》 CSCD 2008年第8期227-230,共4页
利用傅立叶变换进行雷达目标成像,分辨率受瑞利准则的限制;超分辨成像技术能显著改善雷达图像的分辨率,但算法的复杂性急剧增加并且正则化参数不易选取。以稀疏贝叶斯学习为基础,针对雷达成像系统的结构特点,提出了一种基于快速傅立叶变... 利用傅立叶变换进行雷达目标成像,分辨率受瑞利准则的限制;超分辨成像技术能显著改善雷达图像的分辨率,但算法的复杂性急剧增加并且正则化参数不易选取。以稀疏贝叶斯学习为基础,针对雷达成像系统的结构特点,提出了一种基于快速傅立叶变换(FFT)和分块托普里兹(Toeplitz)系统的快速超分辨成像算法。算法无需存储系数矩阵,极大地降低了存储量和运算量。进一步,通过寻找拟合误差曲线和稀疏性度量函数曲线的交点实现了正则化参数的方便选择。仿真结果表明,算法对雷达目标图像具有良好的分辨率增强能力。 展开更多
关键词 超分辨成像 稀疏贝叶斯学习 快速傅立叶变换 分块托普里兹系统 正则化参数
下载PDF
一种有效的宽带航空数据链脉冲干扰抑制方法 被引量:1
13
作者 李冬霞 杨玲 张媛媛 《中国民航大学学报》 CAS 2015年第1期19-23,共5页
为了消除脉冲干扰信号对未来宽带航空数据链系统接收的影响,提出一种脉冲干扰抑制方法。该方法基于压缩感知理论,利用脉冲干扰信号的块稀疏特性以及航空数据链OFDM系统空子载波不传输调制符号的特性,获取观测信号矢量,采用块稀疏贝叶斯... 为了消除脉冲干扰信号对未来宽带航空数据链系统接收的影响,提出一种脉冲干扰抑制方法。该方法基于压缩感知理论,利用脉冲干扰信号的块稀疏特性以及航空数据链OFDM系统空子载波不传输调制符号的特性,获取观测信号矢量,采用块稀疏贝叶斯学习算法和最大期望估计法,给出稀疏脉冲信号统计参数的学习规则,最后重构出脉冲干扰信号并消除。仿真实验表明,该方法可有效地估计出脉冲干扰信号位置与幅度,干扰消除后系统的误比特性能得到显著改善。 展开更多
关键词 宽带航空数据链 块稀疏贝叶斯算法 脉冲干扰抑制
下载PDF
利用块间耦合稀疏贝叶斯学习的建筑物布局成像方法 被引量:4
14
作者 晋良念 冯飞 +1 位作者 刘庆华 欧阳缮 《电子与信息学报》 EI CSCD 北大核心 2018年第4期853-859,共7页
该文针对现有穿墙雷达建筑物布局成像中扩展目标稀疏成像方法未能有效利用墙体反射信号的结构稀疏性,导致成像中出现墙体不连贯和墙体轮廓不明显的问题,提出一种利用稀疏信号块间耦合的建筑物布局成像方法。该方法在块稀疏信号特性的高... 该文针对现有穿墙雷达建筑物布局成像中扩展目标稀疏成像方法未能有效利用墙体反射信号的结构稀疏性,导致成像中出现墙体不连贯和墙体轮廓不明显的问题,提出一种利用稀疏信号块间耦合的建筑物布局成像方法。该方法在块稀疏信号特性的高斯分层先验模型的基础上,利用块间耦合系数进一步表征场景中墙体反射信号的结构稀疏性,然后将其引入到控制稀疏信号先验概率分布的超参数中,从而把稀疏信号的结构性转化为超参数的耦合关系,最后利用期望最大化(EM)算法求解超参数的最大后验(MAP)估计。仿真和实验数据处理结果表明,该方法有效改善了墙体的成像质量。 展开更多
关键词 穿墙雷达 建筑物布局成像 结构稀疏性 稀疏贝叶斯学习 块间耦合
下载PDF
一种复块稀疏贝叶斯探地雷达成像算法 被引量:3
15
作者 杜文静 刘庆华 欧阳缮 《现代雷达》 CSCD 北大核心 2022年第5期33-39,共7页
块稀疏贝叶斯算法因其良好的重建性能被广泛用于探地雷达研究中,但是传统块稀疏贝叶斯算法的提出针对于实数信号,它不能直接用于复数信号的重构。因此,提出一种复块稀疏贝叶斯压缩感知成像算法。此算法通过建立稀疏贝叶斯模型和应用复... 块稀疏贝叶斯算法因其良好的重建性能被广泛用于探地雷达研究中,但是传统块稀疏贝叶斯算法的提出针对于实数信号,它不能直接用于复数信号的重构。因此,提出一种复块稀疏贝叶斯压缩感知成像算法。此算法通过建立稀疏贝叶斯模型和应用复高斯尺度混合模型完成对目标反射系数的重构,将块稀疏贝叶斯学习模型从实数领域拓展至复数领域,并且使用GPRMAX仿真软件建立探地雷达的情景,获得时域数据,重构出地下目标的位置信息。实验结果表明:相比于其他算法,所提算法在低信噪比下成像效果更好。 展开更多
关键词 探地雷达 块稀疏 稀疏贝叶斯学习 成像算法
下载PDF
基于块稀疏贝叶斯学习算法的心电数据重构 被引量:1
16
作者 陈少峰 徐文龙 《中国医学影像学杂志》 CSCD 北大核心 2016年第3期223-226,共4页
压缩感知(CS)技术在心电信号上的应用具有低成本、低功耗等优势,但传统的CS算法重构心电信号质量并不理想。本文介绍了一种基于信号块结构内相关性的块稀疏贝叶斯学习(BSBL)CS算法;并对MIT-BIH数据库中心电数据进行实验,结果显示其均方... 压缩感知(CS)技术在心电信号上的应用具有低成本、低功耗等优势,但传统的CS算法重构心电信号质量并不理想。本文介绍了一种基于信号块结构内相关性的块稀疏贝叶斯学习(BSBL)CS算法;并对MIT-BIH数据库中心电数据进行实验,结果显示其均方根误差远低于传统CS算法,表明该算法能够高质量重构心电信号。BSBL算法在心电数据上的应用有效降低了对数据的采样频率,从而缓解存储压力并降低功耗。 展开更多
关键词 信号处理 计算机辅助 压缩感知 算法 块稀疏贝叶斯学习
下载PDF
基于多字典联合与分层块稀疏贝叶斯框架的多辐射源直接定位方法 被引量:1
17
作者 叶泓臻 郭海召 +2 位作者 关浩亮 张顺生 王文钦 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第3期434-442,共9页
基于压缩感知的直接定位方法依赖准确的信号传播模型,当传播模型的参数部分未知时,其定位性能会显著下降。针对这个问题,该文提出了一种基于多字典联合与分层块稀疏贝叶斯框架的多辐射源直接定位方法。该文将辐射源定位问题转化为恢复... 基于压缩感知的直接定位方法依赖准确的信号传播模型,当传播模型的参数部分未知时,其定位性能会显著下降。针对这个问题,该文提出了一种基于多字典联合与分层块稀疏贝叶斯框架的多辐射源直接定位方法。该文将辐射源定位问题转化为恢复对应不同字典但具有共享稀疏性的信号,通过多字典联合来解决存在信道衰减的辐射源定位问题。仿真结果表明:所提方法在低信噪比和少快拍条件下,相比稀疏贝叶斯方法和直接定位方法具有更优的定位性能。 展开更多
关键词 块稀疏贝叶斯学习 多字典 直接定位 多辐射源定位 到达角 到达时间
下载PDF
基于块稀疏学习的光谱基线校正方法 被引量:1
18
作者 陈苏怡 李浩然 戴继生 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第12期3730-3735,共6页
光谱数据在采集过程中易发生基线偏移现象,导致后续的鉴别和分析结果偏离真实值。因此,在光谱数据分析前,需利用基线校正技术获取更为准确的光谱数据。基于稀疏贝叶斯学习(SBL)的基线校正方法无需人工选择参数,基线校正结果在贝叶斯框... 光谱数据在采集过程中易发生基线偏移现象,导致后续的鉴别和分析结果偏离真实值。因此,在光谱数据分析前,需利用基线校正技术获取更为准确的光谱数据。基于稀疏贝叶斯学习(SBL)的基线校正方法无需人工选择参数,基线校正结果在贝叶斯框架下具有最优性。然而,现有的稀疏贝叶斯建模较为简单,无法适用于复杂的稀疏结构。在实际应用中,当纯谱的某些谱峰较宽时,对应的稀疏向量将具有一定的块稀疏特性。利用额外的块稀疏结构,有助于进一步提升SBL方法的性能。为了建模稀疏向量的块稀疏结构特性,在原有的贝叶斯模型框架中引入模式耦合分层模型。得益于稀疏贝叶斯框架固有的学习能力,引入的模式耦合分层模型可自适应地学习稀疏向量的块稀疏结构,从而大幅提升了基于SBL的基线校正方法的性能。为验证本文方法的基线校正性能,首先利用模拟数据集进行仿真实验,并将该方法与SSFBCSP方法和SBL-BC方法在不同噪声方差条件下进行对比。仿真实验结果表明,该方法恢复谱峰较宽纯谱的效果提升明显,特别是当噪声方差较大时,其他方法的性能均有不同程度的下降,但该方法依然具有较好的稳定性。蒙特卡罗仿真实验结果也显示该方法纯谱拟合的标准化均方根误差明显优于其他对比方法。最后,利用色谱数据集与三种矿物的拉曼光谱数据集进行实测数据的基线校正性能验证,结果表明该方法能产生比其他方法更为平滑的纯谱拟合结果,且去噪效果更优。 展开更多
关键词 光谱分析 块稀疏 稀疏贝叶斯学习 基线校正
下载PDF
基于块稀疏贝叶斯学习的直扩通信窄带干扰检测与参数估计 被引量:5
19
作者 张永顺 朱卫纲 +1 位作者 贾鑫 王满喜 《系统工程与电子技术》 EI CSCD 北大核心 2019年第4期890-898,共9页
现有基于Nyquist采样定理的直扩(direct sequence spread spectrum,DSSS)通信窄带干扰(narrowband interference,NBI)检测和参数估计方法存在应用受限于采样率较高的问题。针对这一问题,将压缩感知(compressive sensing,CS)应用于DSSS通... 现有基于Nyquist采样定理的直扩(direct sequence spread spectrum,DSSS)通信窄带干扰(narrowband interference,NBI)检测和参数估计方法存在应用受限于采样率较高的问题。针对这一问题,将压缩感知(compressive sensing,CS)应用于DSSS通信NBI的检测和参数估计,根据DSSS信号与NBI的不同压缩域特性以及NBI在频域表现出的分块稀疏特性,利用块稀疏贝叶斯学习(block sparse Bayesian leaning,BSBL)框架获取干扰检测和参数估计的特征量,通过对特征量的检测和参数估计实现对NBI的检测和参数估计。理论分析和仿真结果表明:所提方法能够在压缩采样条件下实现对DSSS通信中NBI的有效检测和参数估计,与传统方法相比具有显著优势,干扰检测和参数估计性能受干扰强度、干扰带宽以及压缩率变化的影响,干扰强度越强、干扰带宽越小、压缩率越大,干扰检测和参数估计效果越好。 展开更多
关键词 压缩感知 直扩通信 窄带干扰检测 窄带干扰参数估计 块稀疏 块稀疏贝叶斯学习
下载PDF
基于稀疏贝叶斯学习的时域流信号鲁棒动态压缩感知算法 被引量:5
20
作者 董道广 芮国胜 +2 位作者 田文飚 张洋 张海波 《电子学报》 EI CAS CSCD 北大核心 2020年第5期990-996,共7页
块效应和未知且时变的噪声强度会降低时域流信号动态稀疏重构的性能,为解决该问题,本文基于重叠正交变换和稀疏贝叶斯学习框架,提出一种对时域流信号进行动态压缩感知的鲁棒稀疏贝叶斯学习重构算法.该算法在消除块效应的同时,能够处理... 块效应和未知且时变的噪声强度会降低时域流信号动态稀疏重构的性能,为解决该问题,本文基于重叠正交变换和稀疏贝叶斯学习框架,提出一种对时域流信号进行动态压缩感知的鲁棒稀疏贝叶斯学习重构算法.该算法在消除块效应的同时,能够处理噪声强度未知且时变情形下的动态稀疏重构问题,相比现有的流信号稀疏贝叶斯学习算法具有更强的抗噪鲁棒性.尽管现有的时域流信号压缩感知的有效算法并不多,但实验表明,本文算法的重构信误比和重构成功率均明显高于现有的基于稀疏贝叶斯学习的流信号重构算法和基于L1-同伦的流信号重构算法,且达到相同的重构成功率所需的观测数目少于另两种算法,计算量和运行效率则与稀疏贝叶斯学习算法相近. 展开更多
关键词 块效应 流信号 稀疏贝叶斯学习 动态重构
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部