An azo-group containing polybutadiene macroinitiator was prepared by Pinner synthesis and characterized by IR, NMR, GPC, viscosity and elemental measurements. The macroinitiator was further use to polymerize acrylamid...An azo-group containing polybutadiene macroinitiator was prepared by Pinner synthesis and characterized by IR, NMR, GPC, viscosity and elemental measurements. The macroinitiator was further use to polymerize acrylamide (AAm) in benzene to form polybutadiene/polyacrylamide (PBD/PAAm) block copolymers. High conversion of AAm was obtained over a wide range of monomer/macroinitiator ratios. The PBD/PAAm block copolymers were found to have excellent solvent resistance.展开更多
The design and synthesis of novel dendritic-linear block copolymers were described. The copolymers were synthesized by atom transfer radical polymerization (ATRP) using dendritic polyarylether 2-bromoisobutyrate macr...The design and synthesis of novel dendritic-linear block copolymers were described. The copolymers were synthesized by atom transfer radical polymerization (ATRP) using dendritic polyarylether 2-bromoisobutyrate macroinitiator. ATRP carried out in bulk with CuBr/bipy catalyst at 120癈, yielded well-defined block copolymers with polydispersities less than 1.36.展开更多
A novel,facile method to prepare copolymers by virtue of the reinitiation of precursor containing isopropylthioxanthone(ITX) residues(ITXH) was reported.Using poly(maleic anhydride-co-vinyl acetate)(P(MAH-co-VAc)) wit...A novel,facile method to prepare copolymers by virtue of the reinitiation of precursor containing isopropylthioxanthone(ITX) residues(ITXH) was reported.Using poly(maleic anhydride-co-vinyl acetate)(P(MAH-co-VAc)) with incorporated ITX residues as a macroinitiator,polymerization of styrene was performed,and poly(maleic anhydride-co-vinyl acetate)-b-polystyrene(P(MAH-co-VAc)-b-PSt) was produced.Applying the resultant copolymer in a breath figure procedure,honeycomb structure films having pore size around 250...展开更多
In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(...In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br_2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br_2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93. 8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate (MMA) in the presence of copper (I ) halogen and 2, 2' -bipyridine (bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1. 2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by ~1H NMR spectra.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant 2907200)
文摘An azo-group containing polybutadiene macroinitiator was prepared by Pinner synthesis and characterized by IR, NMR, GPC, viscosity and elemental measurements. The macroinitiator was further use to polymerize acrylamide (AAm) in benzene to form polybutadiene/polyacrylamide (PBD/PAAm) block copolymers. High conversion of AAm was obtained over a wide range of monomer/macroinitiator ratios. The PBD/PAAm block copolymers were found to have excellent solvent resistance.
文摘The design and synthesis of novel dendritic-linear block copolymers were described. The copolymers were synthesized by atom transfer radical polymerization (ATRP) using dendritic polyarylether 2-bromoisobutyrate macroinitiator. ATRP carried out in bulk with CuBr/bipy catalyst at 120癈, yielded well-defined block copolymers with polydispersities less than 1.36.
基金supported by the programs for Changjiang Scholars & Innovative Research Team in Universities (PCSIRT,IRT0706)for Polymer Chemistry and Physics,Beijing Municipal Education Commission(BMEC, No.XK100100640)
文摘A novel,facile method to prepare copolymers by virtue of the reinitiation of precursor containing isopropylthioxanthone(ITX) residues(ITXH) was reported.Using poly(maleic anhydride-co-vinyl acetate)(P(MAH-co-VAc)) with incorporated ITX residues as a macroinitiator,polymerization of styrene was performed,and poly(maleic anhydride-co-vinyl acetate)-b-polystyrene(P(MAH-co-VAc)-b-PSt) was produced.Applying the resultant copolymer in a breath figure procedure,honeycomb structure films having pore size around 250...
基金the National Natural Science Foundation of China!(No. 29634010-2) Research Institute of BeijingYanshan Petrochemical Corpor
文摘In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br_2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br_2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93. 8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate (MMA) in the presence of copper (I ) halogen and 2, 2' -bipyridine (bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1. 2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by ~1H NMR spectra.