At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature poi...At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image.展开更多
In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to t...In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.展开更多
A severe problem in modern information systems is Digital media tampering along with fake information.Even though there is an enhancement in image development,image forgery,either by the photographer or via image mani...A severe problem in modern information systems is Digital media tampering along with fake information.Even though there is an enhancement in image development,image forgery,either by the photographer or via image manipulations,is also done in parallel.Numerous researches have been concentrated on how to identify such manipulated media or information manually along with automatically;thus conquering the complicated forgery methodologies with effortlessly obtainable technologically enhanced instruments.However,high complexity affects the developed methods.Presently,it is complicated to resolve the issue of the speed-accuracy trade-off.For tackling these challenges,this article put forward a quick and effective Copy-Move Forgery Detection(CMFD)system utilizing a novel Quad-sort Moth Flame(QMF)Light Gradient Boosting Machine(QMF-Light GBM).Utilizing Borel Transform(BT)-based Wiener Filter(BWF)and resizing,the input images are initially pre-processed by eliminating the noise in the proposed system.After that,by utilizing the Orientation Preserving Simple Linear Iterative Clustering(OPSLIC),the pre-processed images,partitioned into a number of grids,are segmented.Next,as of the segmented images,the significant features are extracted along with the feature’s distance is calculated and matched with the input images.Next,utilizing the Union Topological Measure of Pattern Diversity(UTMOPD)method,the false positive matches that took place throughout the matching process are eliminated.After that,utilizing the QMF-Light GBM visualization,the visualization of forged in conjunction with non-forged images is performed.The extensive experiments revealed that concerning detection accuracy,the proposed system could be extremely precise when contrasted to some top-notch approaches.展开更多
Purpose-In order to solve the problem that the performance of the existing local feature descriptors in uncontrolled environment is greatly affected by illumination,background,occlusion and other factors,we propose a ...Purpose-In order to solve the problem that the performance of the existing local feature descriptors in uncontrolled environment is greatly affected by illumination,background,occlusion and other factors,we propose a novel face recognition algorithm in uncontrolled environment which combines the block central symmetry local binary pattern(CS-LBP)and deep residual network(DRN)model.Design/methodology/approach-The algorithm first extracts the block CSP-LBP features of the face image,then incorporates the extracted features into the DRN model,and gives the face recognition results by using a well-trained DRN model.The features obtained by the proposed algorithm have the characteristics of both local texture features and deep features that robust to illumination.Findings-Compared with the direct usage of the original image,the usage of local texture features of the image as the input of DRN model significantly improves the computation efficiency.Experimental results on the face datasets of FERET,YALE-B and CMU-PIE have shown that the recognition rate of the proposed algorithm is significantly higher than that of other compared algorithms.Originality/value-The proposed algorithm fundamentally solves the problem of face identity recognition in uncontrolled environment,and it is particularly robust to the change of illumination,which proves its superiority.展开更多
In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of...In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of science but also important to the agricultural production and the environment. Texture as a notable feature is widely used in digital image recognition technology; for describing the texture, an extremely effective method, graylevel co-occurrence matrix(GLCM), has been proposed and used in automatic identification systems. However,according to most of the existing works, GLCM is computed by the whole image, which likely misses some important features in local areas. To solve this problem, this paper presents a new method based on the GLCM features extruded from three image blocks, and a weight-based k-nearest neighbor(KNN) search algorithm used for classifier design. With this method, a butterfly classification system works on ten butterfly species which are hard to identify by shape features. The final identification accuracy is 98%.展开更多
The international standard ISO 10303, called STEP, has been used to deal with problems in the ex-change of product models and the associated data between different computer-aided systems. A platform based on STEP for ...The international standard ISO 10303, called STEP, has been used to deal with problems in the ex-change of product models and the associated data between different computer-aided systems. A platform based on STEP for managing product information is presented. This platform includes three components: a product geometry information model, a product feature model and a product visualization model. An information extracting pattern, in which information is extracted from low level elements to high level ones, is adopted in establishing the product geometry information model. Relative elements lists are created based on the extracted product information. With the traversing of these lists, feature extraction methods are proposed, which take advantage of boundary information in product model and avoid the determination of concavity and convexity of curves. Information correlating to fea-tures is stored in a structure named as feature block and the product visualization model is founded from it. The feature block is used in the platform for information communication and synchronous update among the three com-ponents.展开更多
基金This research was funded by College Student Innovation and Entrepreneurship Training Program,Grant Number 2021055Z and S202110082031the Special Project for Cultivating Scientific and Technological Innovation Ability of College and Middle School Students in Hebei Province,Grant Number 2021H011404.
文摘At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image.
基金Supported by the Major Program of National Natural Science Foundation of China (No. 70890080 and No. 70890083)
文摘In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.
文摘A severe problem in modern information systems is Digital media tampering along with fake information.Even though there is an enhancement in image development,image forgery,either by the photographer or via image manipulations,is also done in parallel.Numerous researches have been concentrated on how to identify such manipulated media or information manually along with automatically;thus conquering the complicated forgery methodologies with effortlessly obtainable technologically enhanced instruments.However,high complexity affects the developed methods.Presently,it is complicated to resolve the issue of the speed-accuracy trade-off.For tackling these challenges,this article put forward a quick and effective Copy-Move Forgery Detection(CMFD)system utilizing a novel Quad-sort Moth Flame(QMF)Light Gradient Boosting Machine(QMF-Light GBM).Utilizing Borel Transform(BT)-based Wiener Filter(BWF)and resizing,the input images are initially pre-processed by eliminating the noise in the proposed system.After that,by utilizing the Orientation Preserving Simple Linear Iterative Clustering(OPSLIC),the pre-processed images,partitioned into a number of grids,are segmented.Next,as of the segmented images,the significant features are extracted along with the feature’s distance is calculated and matched with the input images.Next,utilizing the Union Topological Measure of Pattern Diversity(UTMOPD)method,the false positive matches that took place throughout the matching process are eliminated.After that,utilizing the QMF-Light GBM visualization,the visualization of forged in conjunction with non-forged images is performed.The extensive experiments revealed that concerning detection accuracy,the proposed system could be extremely precise when contrasted to some top-notch approaches.
基金The education and scientific research project of young and middle-aged teachers of Fujian Provincial Department of education(No.JAT171070).
文摘Purpose-In order to solve the problem that the performance of the existing local feature descriptors in uncontrolled environment is greatly affected by illumination,background,occlusion and other factors,we propose a novel face recognition algorithm in uncontrolled environment which combines the block central symmetry local binary pattern(CS-LBP)and deep residual network(DRN)model.Design/methodology/approach-The algorithm first extracts the block CSP-LBP features of the face image,then incorporates the extracted features into the DRN model,and gives the face recognition results by using a well-trained DRN model.The features obtained by the proposed algorithm have the characteristics of both local texture features and deep features that robust to illumination.Findings-Compared with the direct usage of the original image,the usage of local texture features of the image as the input of DRN model significantly improves the computation efficiency.Experimental results on the face datasets of FERET,YALE-B and CMU-PIE have shown that the recognition rate of the proposed algorithm is significantly higher than that of other compared algorithms.Originality/value-The proposed algorithm fundamentally solves the problem of face identity recognition in uncontrolled environment,and it is particularly robust to the change of illumination,which proves its superiority.
基金the Yunnan Applied Basic Research Projects(No.2016FD039)the Talent Cultivation Project in Yunnan Province(No.KKSY201503063)
文摘In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of science but also important to the agricultural production and the environment. Texture as a notable feature is widely used in digital image recognition technology; for describing the texture, an extremely effective method, graylevel co-occurrence matrix(GLCM), has been proposed and used in automatic identification systems. However,according to most of the existing works, GLCM is computed by the whole image, which likely misses some important features in local areas. To solve this problem, this paper presents a new method based on the GLCM features extruded from three image blocks, and a weight-based k-nearest neighbor(KNN) search algorithm used for classifier design. With this method, a butterfly classification system works on ten butterfly species which are hard to identify by shape features. The final identification accuracy is 98%.
基金Supported by National Natural Science Foundation of China (No.50475117)Tianjin Municipal Science and Technology Commission (No.05YFJZJC01800)Research Fund for the Doctoral Program of Higher Education of China (No.20060056016).
文摘The international standard ISO 10303, called STEP, has been used to deal with problems in the ex-change of product models and the associated data between different computer-aided systems. A platform based on STEP for managing product information is presented. This platform includes three components: a product geometry information model, a product feature model and a product visualization model. An information extracting pattern, in which information is extracted from low level elements to high level ones, is adopted in establishing the product geometry information model. Relative elements lists are created based on the extracted product information. With the traversing of these lists, feature extraction methods are proposed, which take advantage of boundary information in product model and avoid the determination of concavity and convexity of curves. Information correlating to fea-tures is stored in a structure named as feature block and the product visualization model is founded from it. The feature block is used in the platform for information communication and synchronous update among the three com-ponents.