We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the F...We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the Feng spectrum)of the whole operator matrix and that of its entries.In addition,the connection between the Furi-Martelli-Vignoli spectrum of the whole operator matrix and that of its Schur complement is presented by means of Schur decomposition.展开更多
The block H-matrices are studied by the concept of G-functions, several concepts of block matrices are introduced. Equivalent characters of block H-matrices are obtained. Spectrum localizations characterized by G-func...The block H-matrices are studied by the concept of G-functions, several concepts of block matrices are introduced. Equivalent characters of block H-matrices are obtained. Spectrum localizations characterized by G-functions for block matrices are got.展开更多
For discrete spectrum of 1D second-order differential/difference operators(with or without potential(killing),with the maximal/minimal domain),a pair of unified dual criteria are presented in terms of two explicit mea...For discrete spectrum of 1D second-order differential/difference operators(with or without potential(killing),with the maximal/minimal domain),a pair of unified dual criteria are presented in terms of two explicit measures and the harmonic function of the operators.Interestingly,these criteria can be read out from the ones for the exponential convergence of four types of stability studied earlier,simply replacing the‘finite supremum’by‘vanishing at infinity’.Except a dual technique,the main tool used here is a transform in terms of the harmonic function,to which two new practical algorithms are introduced in the discrete context and two successive approximation schemes are reviewed in the continuous context.All of them are illustrated by examples.The main body of the paper is devoted to the hard part of the story,the easier part but powerful one is delayed to the end of the paper.展开更多
In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix pr...In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix product.展开更多
This paper investigates the numerical solution of two-dimensional nonlinear stochastic Itô-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed...This paper investigates the numerical solution of two-dimensional nonlinear stochastic Itô-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed into a set of algebraic equations by operational matrix of block pulse functions. Then, we give error analysis and prove that the rate of convergence of this method is efficient. Lastly, a numerical example is given to confirm the method.展开更多
In this paper, we study a bounded-below singular Hamiltonian system. Sufficient and necessary conditions are obtained for the existence and the number of eigenvalues on the left-axis. The main results of this paper ar...In this paper, we study a bounded-below singular Hamiltonian system. Sufficient and necessary conditions are obtained for the existence and the number of eigenvalues on the left-axis. The main results of this paper are the extension and improvement of Weyl spectral theorem for singular sccond order differential equations.展开更多
In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm ineq...In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm inequalities for combination of orthogonal projections on a Hilbert space.Furthermore,we give necessary and sufficient conditions under which the norm of the above combination of o`rthogonal projections attains its optimal value.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11561048 and 11761029)the Natural Science Foundation of Inner Mongolia,China(Grant Nos.2019MS01019 and 2020ZD01)。
文摘We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the Feng spectrum)of the whole operator matrix and that of its entries.In addition,the connection between the Furi-Martelli-Vignoli spectrum of the whole operator matrix and that of its Schur complement is presented by means of Schur decomposition.
文摘The block H-matrices are studied by the concept of G-functions, several concepts of block matrices are introduced. Equivalent characters of block H-matrices are obtained. Spectrum localizations characterized by G-functions for block matrices are got.
基金The author thanks S.Kotani for introducing[7]and[9]to him and R.O˘ınarov for sending him the original version of[12].Thanks are also given to H.J.Zhang and Z.W.Liao for their corrections of an earlier version of the paper.Research supported in part by the National Natural Science Foundation of China(No.11131003)the“985”project from the Ministry of Education in China,and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘For discrete spectrum of 1D second-order differential/difference operators(with or without potential(killing),with the maximal/minimal domain),a pair of unified dual criteria are presented in terms of two explicit measures and the harmonic function of the operators.Interestingly,these criteria can be read out from the ones for the exponential convergence of four types of stability studied earlier,simply replacing the‘finite supremum’by‘vanishing at infinity’.Except a dual technique,the main tool used here is a transform in terms of the harmonic function,to which two new practical algorithms are introduced in the discrete context and two successive approximation schemes are reviewed in the continuous context.All of them are illustrated by examples.The main body of the paper is devoted to the hard part of the story,the easier part but powerful one is delayed to the end of the paper.
文摘In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix product.
基金NSF Grants 11471105 of China, NSF Grants 2016CFB526 of Hubei Province, Innovation Team of the Educational Department of Hubei Province T201412, and Innovation Items of Hubei Normal University 2018032 and 2018105
文摘This paper investigates the numerical solution of two-dimensional nonlinear stochastic Itô-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed into a set of algebraic equations by operational matrix of block pulse functions. Then, we give error analysis and prove that the rate of convergence of this method is efficient. Lastly, a numerical example is given to confirm the method.
基金This work was supported by Ningbo Doctoral Science Foundation (No.2004A620018) National Natural Science Foundation of China (No.10471069).
文摘In this paper, we study a bounded-below singular Hamiltonian system. Sufficient and necessary conditions are obtained for the existence and the number of eigenvalues on the left-axis. The main results of this paper are the extension and improvement of Weyl spectral theorem for singular sccond order differential equations.
文摘In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm inequalities for combination of orthogonal projections on a Hilbert space.Furthermore,we give necessary and sufficient conditions under which the norm of the above combination of o`rthogonal projections attains its optimal value.