期刊文献+
共找到9,642篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing IoT Data Security with Lightweight Blockchain and Okamoto Uchiyama Homomorphic Encryption 被引量:1
1
作者 Mohanad A.Mohammed Hala B.Abdul Wahab 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1731-1748,共18页
Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revol... Blockchain technology has garnered significant attention from global organizations and researchers due to its potential as a solution for centralized system challenges.Concurrently,the Internet of Things(IoT)has revolutionized the Fourth Industrial Revolution by enabling interconnected devices to offer innovative services,ultimately enhancing human lives.This paper presents a new approach utilizing lightweight blockchain technology,effectively reducing the computational burden typically associated with conventional blockchain systems.By integrating this lightweight blockchain with IoT systems,substantial reductions in implementation time and computational complexity can be achieved.Moreover,the paper proposes the utilization of the Okamoto Uchiyama encryption algorithm,renowned for its homomorphic characteristics,to reinforce the privacy and security of IoT-generated data.The integration of homomorphic encryption and blockchain technology establishes a secure and decentralized platformfor storing and analyzing sensitive data of the supply chain data.This platformfacilitates the development of some business models and empowers decentralized applications to perform computations on encrypted data while maintaining data privacy.The results validate the robust security of the proposed system,comparable to standard blockchain implementations,leveraging the distinctive homomorphic attributes of the Okamoto Uchiyama algorithm and the lightweight blockchain paradigm. 展开更多
关键词 blockchain IOT integration of IoT and blockchain consensus algorithm Okamoto Uchiyama homomorphic encryption lightweight blockchain
下载PDF
Data Secure Storage Mechanism for IIoT Based on Blockchain 被引量:2
2
作者 Jin Wang Guoshu Huang +2 位作者 R.Simon Sherratt Ding Huang Jia Ni 《Computers, Materials & Continua》 SCIE EI 2024年第3期4029-4048,共20页
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi... With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of IIoT.Blockchain technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the IIoT.In the traditional blockchain,data is stored in a Merkle tree.As data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based IIoT.Accordingly,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of data.To solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC structure.Secondly,this paper uses PVC instead of the Merkle tree to store big data generated by IIoT.PVC can improve the efficiency of traditional VC in the process of commitment and opening.Finally,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of experiments.This mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT. 展开更多
关键词 blockchain IIoT data storage cryptographic commitment
下载PDF
A Blockchain and CP-ABE Based Access Control Scheme with Fine-Grained Revocation of Attributes in Cloud Health 被引量:1
3
作者 Ye Lu Tao Feng +1 位作者 Chunyan Liu Wenbo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2787-2811,共25页
The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of... The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions. 展开更多
关键词 blockchain access-control CP-ABE cloud health
下载PDF
A Blockchain-Based Access Control Scheme for Reputation Value Attributes of the Internet of Things 被引量:1
4
作者 Hongliang Tian Junyuan Tian 《Computers, Materials & Continua》 SCIE EI 2024年第1期1297-1310,共14页
The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access cont... The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices. 展开更多
关键词 blockchain IOT access control Hyperledger Fabric
下载PDF
On Designs of Decentralized Reputation Management for Permissioned Blockchain Networks
5
作者 Jinyu Chen Long Shi +2 位作者 Qisheng Huang Taotao Wang Daojing He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1755-1773,共19页
In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughp... In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughput and fault tolerance.However,PoA suffers from the drawback of centralization dominated by a limited number of authorized nodes and the lack of anonymity due to the round-robin block proposal mechanism.As a result,traditional PoA is vulnerable to a single point of failure that compromises the security of the blockchain network.To address these issues,we propose a novel decentralized reputation management mechanism for permissioned blockchain networks to enhance security,promote liveness,and mitigate centralization while retaining the same throughput as traditional PoA.This paper aims to design an off-chain reputation evaluation and an on-chain reputation-aided consensus.First,we evaluate the nodes’reputation in the context of the blockchain networks and make the reputation globally verifiable through smart contracts.Second,building upon traditional PoA,we propose a reputation-aided PoA(rPoA)consensus to enhance securitywithout sacrificing throughput.In particular,rPoA can incentivize nodes to autonomously form committees based on reputation authority,which prevents block generation from being tracked through the randomness of reputation variation.Moreover,we develop a reputation-aided fork-choice rule for rPoA to promote the network’s liveness.Finally,experimental results show that the proposed rPoA achieves higher security performance while retaining transaction throughput compared to traditional PoA. 展开更多
关键词 blockchain reputation management POA THROUGHPUT SECURITY DECENTRALIZATION
下载PDF
For Mega-Constellations: Edge Computing and Safety Management Based on Blockchain Technology
6
作者 Zhen Zhang Bing Guo Chengjie Li 《China Communications》 SCIE CSCD 2024年第2期59-73,共15页
In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of sate... In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed. 展开更多
关键词 blockchain consensus mechanism edge computing mega-constellation reputation management
下载PDF
Inter-agency government information sharing under data-driven blockchain framework
7
作者 XIAO Jiong-en HONG Ming DING Li-ping 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第8期1369-1376,共8页
The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fu... The inter-agency government information sharing(IAGIS)plays an important role in improving service and efficiency of government agencies.Currently,there is still no effective and secure way for data-driven IAGIS to fulfill dynamic demands of information sharing between government agencies.Motivated by blockchain and data mining,a data-driven framework is proposed for IAGIS in this paper.Firstly,the blockchain is used as the core to design the whole framework for monitoring and preventing leakage and abuse of government information,in order to guarantee information security.Secondly,a four-layer architecture is designed for implementing the proposed framework.Thirdly,the classical data mining algorithms PageRank and Apriori are applied to dynamically design smart contracts for information sharing,for the purposed of flexibly adjusting the information sharing strategies according to the practical demands of government agencies for public management and public service.Finally,a case study is presented to illustrate the operation of the proposed framework. 展开更多
关键词 government data processing blockchain PAGERANK APRIORI
下载PDF
A Framework for Enhancing Privacy and Anonymity in Blockchain-Enabled IoT Devices
8
作者 Muhammad Saad Muhammad Raheel Bhutta +1 位作者 Jongik Kim Tae-Sun Chung 《Computers, Materials & Continua》 SCIE EI 2024年第3期4263-4282,共20页
With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughou... With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughout the system is a desired functionality that does not come without inevitable trade-offs like scalability and increased complexity and is always exceedingly difficult to manage.The challenge is keeping confidentiality and continuing to make the person innominate throughout the system.To address this,we present our proposed architecture where we manage IoT devices using blockchain technology.Our proposed architecture works on and off blockchain integrated with the closed-circuit television(CCTV)security camera fixed at the rental property.In this framework,the CCTV security camera feed is redirected towards the owner and renter based on the smart contract conditions.One entity(owner or renter)can see the CCTV security camera feed at one time.There is no third-party dependence except for the CCTV security camera deployment phase.Our contributions include the proposition of framework architecture,a novel smart contract algorithm,and the modification to the ring signatures leveraging an existing cryptographic technique.Analyses are made based on different systems’security and key management areas.In an empirical study,our proposed algorithm performed better in key generation,proof generation,and verification times.By comparing similar existing schemes,we have shown the proposed architectures’advantages.Until now,we have developed this system for a specific area in the real world.However,this system is scalable and applicable to other areas like healthcare monitoring systems,which is part of our future work. 展开更多
关键词 PRIVACY ANONYMITY blockchain IOT smart contracts
下载PDF
Blockchain-Enabled Cybersecurity Provision for Scalable Heterogeneous Network:A Comprehensive Survey
9
作者 Md.Shohidul Islam Md.Arafatur Rahman +3 位作者 Mohamed Ariff Bin Ameedeen Husnul Ajra Zahian Binti Ismail Jasni Mohamad Zain 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期43-123,共81页
Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance,transportation,healthcare,education,... Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance,transportation,healthcare,education,and supply chain management.Blockchain interactions in the heterogeneous network have fascinated more attention due to the authentication of their digital application exchanges.However,the exponential development of storage space capabilities across the blockchain-based heterogeneous network has become an important issue in preventing blockchain distribution and the extension of blockchain nodes.There is the biggest challenge of data integrity and scalability,including significant computing complexity and inapplicable latency on regional network diversity,operating system diversity,bandwidth diversity,node diversity,etc.,for decision-making of data transactions across blockchain-based heterogeneous networks.Data security and privacy have also become the main concerns across the heterogeneous network to build smart IoT ecosystems.To address these issues,today’s researchers have explored the potential solutions of the capability of heterogeneous network devices to perform data transactions where the system stimulates their integration reliably and securely with blockchain.The key goal of this paper is to conduct a state-of-the-art and comprehensive survey on cybersecurity enhancement using blockchain in the heterogeneous network.This paper proposes a full-fledged taxonomy to identify the main obstacles,research gaps,future research directions,effective solutions,andmost relevant blockchain-enabled cybersecurity systems.In addition,Blockchain based heterogeneous network framework with cybersecurity is proposed in this paper tomeet the goal of maintaining optimal performance data transactions among organizations.Overall,this paper provides an in-depth description based on the critical analysis to overcome the existing work gaps for future research where it presents a potential cybersecurity design with key requirements of blockchain across a heterogeneous network. 展开更多
关键词 blockchain CYBERSECURITY data transaction diversity heterogeneous
下载PDF
Automated Vulnerability Detection of Blockchain Smart Contacts Based on BERT Artificial Intelligent Model
10
作者 Feng Yiting Ma Zhaofeng +1 位作者 Duan Pengfei Luo Shoushan 《China Communications》 SCIE CSCD 2024年第7期237-251,共15页
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.De... The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy. 展开更多
关键词 BERT blockchain smart contract vulnerability detection
下载PDF
A Framework Based on the DAO and NFT in Blockchain for Electronic Document Sharing
11
作者 Lin Chen Jiaming Zhu +2 位作者 Yuting Xu Huanqin Zheng Shen Su 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2373-2395,共23页
In the information age,electronic documents(e-documents)have become a popular alternative to paper documents due to their lower costs,higher dissemination rates,and ease of knowledge sharing.However,digital copyright ... In the information age,electronic documents(e-documents)have become a popular alternative to paper documents due to their lower costs,higher dissemination rates,and ease of knowledge sharing.However,digital copyright infringements occur frequently due to the ease of copying,which not only infringes on the rights of creators but also weakens their creative enthusiasm.Therefore,it is crucial to establish an e-document sharing system that enforces copyright protection.However,the existing centralized system has outstanding vulnerabilities,and the plagiarism detection algorithm used cannot fully detect the context,semantics,style,and other factors of the text.Digital watermark technology is only used as a means of infringement tracing.This paper proposes a decentralized framework for e-document sharing based on decentralized autonomous organization(DAO)and non-fungible token(NFT)in blockchain.The use of blockchain as a distributed credit base resolves the vulnerabilities inherent in traditional centralized systems.The e-document evaluation and plagiarism detection mechanisms based on the DAO model effectively address challenges in comprehensive text information checks,thereby promoting the enhancement of e-document quality.The mechanism for protecting and circulating e-document copyrights using NFT technology ensures effective safeguarding of users’e-document copyrights and facilitates e-document sharing.Moreover,recognizing the security issues within the DAO governance mechanism,we introduce an innovative optimization solution.Through experimentation,we validate the enhanced security of the optimized governance mechanism,reducing manipulation risks by up to 51%.Additionally,by utilizing evolutionary game analysis to deduce the equilibrium strategies of the framework,we discovered that adjusting the reward and penalty parameters of the incentive mechanism motivates creators to generate superior quality and unique e-documents,while evaluators are more likely to engage in assessments. 展开更多
关键词 Electronic document sharing blockchain DAO NFT evolutionary game
下载PDF
Redundant Data Detection and Deletion to Meet Privacy Protection Requirements in Blockchain-Based Edge Computing Environment
12
作者 Zhang Lejun Peng Minghui +6 位作者 Su Shen Wang Weizheng Jin Zilong Su Yansen Chen Huiling Guo Ran Sergey Gataullin 《China Communications》 SCIE CSCD 2024年第3期149-159,共11页
With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou... With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis. 展开更多
关键词 blockchain data integrity edge computing privacy protection redundant data
下载PDF
Joint Optimization of Energy Consumption and Network Latency in Blockchain-Enabled Fog Computing Networks
13
作者 Huang Xiaoge Yin Hongbo +3 位作者 Cao Bin Wang Yongsheng Chen Qianbin Zhang Jie 《China Communications》 SCIE CSCD 2024年第4期104-119,共16页
Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this pap... Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature. 展开更多
关键词 blockchain energy consumption fog computing network Internet of Things LATENCY
下载PDF
A Federated Learning Framework with Blockchain-Based Auditable Participant Selection
14
作者 Huang Zeng Mingtian Zhang +1 位作者 Tengfei Liu Anjia Yang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5125-5142,共18页
Federated learning is an important distributed model training technique in Internet of Things(IoT),in which participant selection is a key component that plays a role in improving training efficiency and model accurac... Federated learning is an important distributed model training technique in Internet of Things(IoT),in which participant selection is a key component that plays a role in improving training efficiency and model accuracy.This module enables a central server to select a subset of participants to performmodel training based on data and device information.By doing so,selected participants are rewarded and actively perform model training,while participants that are detrimental to training efficiency and model accuracy are excluded.However,in practice,participants may suspect that the central server may have miscalculated and thus not made the selection honestly.This lack of trustworthiness problem,which can demotivate participants,has received little attention.Another problem that has received little attention is the leakage of participants’private information during the selection process.We will therefore propose a federated learning framework with auditable participant selection.It supports smart contracts in selecting a set of suitable participants based on their training loss without compromising the privacy.Considering the possibility of malicious campaigning and impersonation of participants,the framework employs commitment schemes and zero-knowledge proofs to counteract these malicious behaviors.Finally,we analyze the security of the framework and conduct a series of experiments to demonstrate that the framework can effectively improve the efficiency of federated learning. 展开更多
关键词 Federated learning internet of things participant selection blockchain auditability PRIVACY
下载PDF
VKFQ:A Verifiable Keyword Frequency Query Framework with Local Differential Privacy in Blockchain
15
作者 Youlin Ji Bo Yin Ke Gu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4205-4223,共19页
With its untameable and traceable properties,blockchain technology has been widely used in the field of data sharing.How to preserve individual privacy while enabling efficient data queries is one of the primary issue... With its untameable and traceable properties,blockchain technology has been widely used in the field of data sharing.How to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data sharing.In this paper,we study verifiable keyword frequency(KF)queries with local differential privacy in blockchain.Both the numerical and the keyword attributes are present in data objects;the latter are sensitive and require privacy protection.However,prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF queries.We propose an efficient framework that protects data owners’privacy on keyword attributes while enabling quick and verifiable query processing for KF queries.The framework computes an estimate of a keyword’s frequency and is efficient in query time and verification object(VO)size.A utility-optimized local differential privacy technique is used for privacy protection.The data owner adds noise locally into data based on local differential privacy so that the attacker cannot infer the owner of the keywords while keeping the difference in the probability distribution of the KF within the privacy budget.We propose the VB-cm tree as the authenticated data structure(ADS).The VB-cm tree combines the Verkle tree and the Count-Min sketch(CM-sketch)to lower the VO size and query time.The VB-cm tree uses the vector commitment to verify the query results.The fixed-size CM-sketch,which summarizes the frequency of multiple keywords,is used to estimate the KF via hashing operations.We conduct an extensive evaluation of the proposed framework.The experimental results show that compared to theMerkle B+tree,the query time is reduced by 52.38%,and the VO size is reduced by more than one order of magnitude. 展开更多
关键词 SECURITY data sharing blockchain data query privacy protection
下载PDF
Blockchain-Based MCS Detection Framework of Abnormal Spectrum Usage for Satellite Spectrum Sharing Scenario
16
作者 Ning Yang Heng Wang +3 位作者 Jingming Hu Bangning Zhang Daoxing Guo Yuan Liu 《China Communications》 SCIE CSCD 2024年第2期32-48,共17页
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit... In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework. 展开更多
关键词 blockchain hypothesis test mobile crowdsensing satellite communication spectrum sharing
下载PDF
A Blockchain-Based Game Approach to Multi-Microgrid Energy Dispatch
17
作者 Zhikang Wang Chengxuan Wang +2 位作者 Wendi Wu Cheng Sun Zhengtian Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期845-863,共19页
As the current global environment is deteriorating,distributed renewable energy is gradually becoming an important member of the energy internet.Blockchain,as a decentralized distributed ledger with decentralization,t... As the current global environment is deteriorating,distributed renewable energy is gradually becoming an important member of the energy internet.Blockchain,as a decentralized distributed ledger with decentralization,traceability and tamper-proof features,is an importantway to achieve efficient consumption andmulti-party supply of new energy.In this article,we establish a blockchain-based mathematical model of multiple microgrids and microgrid aggregators’revenue,consider the degree of microgrid users’preference for electricity thus increasing users’reliance on the blockchainmarket,and apply the one-master-multiple-slave Stackelberg game theory to solve the energy dispatching strategy when each market entity pursues the maximum revenue.The simulation results show that the blockchain-based dynamic game of the multi-microgrid market can effectively increase the revenue of both microgrids and aggregators and improve the utilization of renewable energy. 展开更多
关键词 Multi-microgrid blockchain stackelberg game energy scheduling
下载PDF
Mitigating Blackhole and Greyhole Routing Attacks in Vehicular Ad Hoc Networks Using Blockchain Based Smart Contracts
18
作者 Abdulatif Alabdulatif Mada Alharbi +1 位作者 Abir Mchergui Tarek Moulahi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期2005-2021,共17页
The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced techno... The rapid increase in vehicle traffic volume in modern societies has raised the need to develop innovative solutions to reduce traffic congestion and enhance traffic management efficiency.Revolutionary advanced technology,such as Intelligent Transportation Systems(ITS),enables improved traffic management,helps eliminate congestion,and supports a safer environment.ITS provides real-time information on vehicle traffic and transportation systems that can improve decision-making for road users.However,ITS suffers from routing issues at the network layer when utilising Vehicular Ad Hoc Networks(VANETs).This is because each vehicle plays the role of a router in this network,which leads to a complex vehicle communication network,causing issues such as repeated link breakages between vehicles resulting from the mobility of the network and rapid topological variation.This may lead to loss or delay in packet transmissions;this weakness can be exploited in routing attacks,such as black-hole and gray-hole attacks,that threaten the availability of ITS services.In this paper,a Blockchain-based smart contracts model is proposed to offer convenient and comprehensive security mechanisms,enhancing the trustworthiness between vehicles.Self-Classification Blockchain-Based Contracts(SCBC)and Voting-Classification Blockchain-Based Contracts(VCBC)are utilised in the proposed protocol.The results show that VCBC succeeds in attaining better results in PDR and TP performance even in the presence of Blackhole and Grayhole attacks. 展开更多
关键词 blockchain data privacy machine learning routing attacks smart contract VANET
下载PDF
Enhancing Security and Privacy in Distributed Face Recognition Systems through Blockchain and GAN Technologies
19
作者 Muhammad Ahmad Nawaz Ul Ghani Kun She +4 位作者 Muhammad Arslan Rauf Shumaila Khan Javed Ali Khan Eman Abdullah Aldakheel Doaa Sami Khafaga 《Computers, Materials & Continua》 SCIE EI 2024年第5期2609-2623,共15页
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in... The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity. 展开更多
关键词 Facial recognition privacy protection blockchain GAN distributed systems
下载PDF
CRBFT:A Byzantine Fault-Tolerant Consensus Protocol Based on Collaborative Filtering Recommendation for Blockchains
20
作者 Xiangyu Wu Xuehui Du +3 位作者 Qiantao Yang Aodi Liu Na Wang Wenjuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1491-1519,共29页
Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants t... Blockchain has been widely used in finance,the Internet of Things(IoT),supply chains,and other scenarios as a revolutionary technology.Consensus protocol plays a vital role in blockchain,which helps all participants to maintain the storage state consistently.However,with the improvement of network environment complexity and system scale,blockchain development is limited by the performance,security,and scalability of the consensus protocol.To address this problem,this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance(PBFT)and proposes a Byzantine fault-tolerant(BFT)consensus protocol based on collaborative filtering recommendation(CRBFT).Specifically,an improved collaborative filtering recommendation method is designed to use the similarity between a node’s recommendation opinions and those of the recommender as a basis for determining whether to adopt the recommendation opinions.This can amplify the recommendation voice of good nodes,weaken the impact of cunningmalicious nodes on the trust value calculation,andmake the calculated resultsmore accurate.In addition,the nodes are given voting power according to their trust value,and a weight randomelection algorithm is designed and implemented to reduce the risk of attack.The experimental results show that CRBFT can effectively eliminate various malicious nodes and improve the performance of blockchain systems in complex network environments,and the feasibility of CRBFT is also proven by theoretical analysis. 展开更多
关键词 blockchain CONSENSUS byzantine fault-tolerant collaborative filtering TRUST
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部