期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Blood Vessel Segmentation with Classification Model for Diabetic Retinopathy Screening
1
作者 Abdullah O.Alamoudi Sarah Mohammed Allabun 《Computers, Materials & Continua》 SCIE EI 2023年第4期2265-2281,共17页
Biomedical image processing is finding useful in healthcare sector for the investigation,enhancement,and display of images gathered by distinct imaging technologies.Diabetic retinopathy(DR)is an illness caused by diab... Biomedical image processing is finding useful in healthcare sector for the investigation,enhancement,and display of images gathered by distinct imaging technologies.Diabetic retinopathy(DR)is an illness caused by diabetes complications and leads to irreversible injury to the retina blood vessels.Retinal vessel segmentation techniques are a basic element of automated retinal disease screening system.In this view,this study presents a novel blood vessel segmentation with deep learning based classification(BVS-DLC)model forDRdiagnosis using retinal fundus images.The proposed BVS-DLC model involves different stages of operations such as preprocessing,segmentation,feature extraction,and classification.Primarily,the proposed model uses the median filtering(MF)technique to remove the noise that exists in the image.In addition,a multilevel thresholding based blood vessel segmentation process using seagull optimization(SGO)with Kapur’s entropy is performed.Moreover,the shark optimization algorithm(SOA)with Capsule Networks(CapsNet)model with softmax layer is employed for DR detection and classification.Awide range of simulations was performed on the MESSIDOR dataset and the results are investigated interms of different measures.The simulation results ensured the better performance of the proposed model compared to other existing techniques interms of sensitivity,specificity,receiver operating characteristic(ROC)curve,accuracy,and F-score. 展开更多
关键词 Diabetic retinopathy deep learning blood vessel segmentation metaheuristics image processing messidor dataset
下载PDF
Intelligent Machine Learning Enabled Retinal Blood Vessel Segmentation and Classification
2
作者 Nora Abdullah Alkhaldi Hanan T.Halawani 《Computers, Materials & Continua》 SCIE EI 2023年第1期399-414,共16页
Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis.The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system fo... Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis.The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system for initial analysis and treatment of retinal disease.This article develops a new Grasshopper Optimization with Fuzzy Edge Detection based Retinal Blood Vessel Segmentation and Classification(GOFED-RBVSC)model.The proposed GOFED-RBVSC model initially employs contrast enhancement process.Besides,GOAFED approach is employed to detect the edges in the retinal fundus images in which the use of GOA adjusts the membership functions.The ORB(Oriented FAST and Rotated BRIEF)feature extractor is exploited to generate feature vectors.Finally,Improved Conditional Variational Auto Encoder(ICAVE)is utilized for retinal image classification,shows the novelty of the work.The performance validation of the GOFEDRBVSC model is tested using benchmark dataset,and the comparative study highlighted the betterment of the GOFED-RBVSC model over the recent approaches. 展开更多
关键词 Edge detection blood vessel segmentation retinal fundus images image classification deep learning
下载PDF
Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm 被引量:9
3
作者 姚畅 陈后金 《Journal of Central South University》 SCIE EI CAS 2009年第4期640-646,共7页
According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorit... According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorithm was proposed for automated retinal blood vessels segmentation. Firstly, 2D Gaussian matched filter was used to enhance the retinal images and simplified PCNN was employed to segment the blood vessels by firing neighborhood neurons. Then, fast 2D-Otsu algorithm was introduced to search the best segmentation results and iteration times with less computation time. Finally, the whole vessel network was obtained via analyzing the regional connectivity. Experiments implemented on the public Hoover database indicate that this new method gets a 0.803 5 true positive rate and a 0.028 0 false positive rate on an average. According to the test results, compared with Hoover algorithm and method of PCNN and 1D-Otsu, the proposed method shows much better performance. 展开更多
关键词 blood vessel segmentation pulse coupled neural network (PCNN) OTSU NEURON
下载PDF
A fast method to detect blood vessel in retinal image
4
作者 TIAN Bei CHEN Zhen-guo +1 位作者 GUO Xue-qian XU Li-li 《Chinese Medical Journal》 SCIE CAS CSCD 2013年第10期1984-1986,共3页
Due to the increasing number ot diabetic patients, the number of people affected by diabetic retinopathy isexpected to increase. Diabetic retinopathy is a complication of diabetes and the most serious frequent eye dis... Due to the increasing number ot diabetic patients, the number of people affected by diabetic retinopathy isexpected to increase. Diabetic retinopathy is a complication of diabetes and the most serious frequent eye disease in the world. Large-scale retinal screening for diabetic patients is necessary to prevent visual loss and blindness. The analysis of digital retinal images, obtained by the fundus camera, is viewed as a feasible approach because retinal blood vessels have been shown to change in diameter, branching angles, or tortuosity as a result of diabetic retinopathy. The morphological change can help identify the different stages of diabetic retinopathy. In addition, the acquisition of retinal image is nonintrusive and low cost. Automatic segmentation of the retinal blood vessel is a prerequisite for this analysis.~3 This article presents a method to detect blood vessel based on sobel operators.4 Small and fast computation is the outstanding merit of this method. 展开更多
关键词 retinal image segmentation of blood vessel sobel operators
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部